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Abstract: In this paper, we study the perturbative aspects of a “B-twisted” two-

dimensional (0, 2) heterotic sigma model on a holomorphic gauge bundle E over a complex,

hermitian manifold X. We show that the model can be naturally described in terms of

the mathematical theory of “Chiral Differential Operators”. In particular, the physical

anomalies of the sigma model can be reinterpreted as an obstruction to a global definition

of the associated sheaf of vertex superalgebras derived from the free conformal field theory

describing the model locally on X. In addition, one can also obtain a novel understanding

of the sigma model one-loop beta function solely in terms of holomorphic data. At the

(2, 2) locus, one can describe the resulting half-twisted variant of the topological B-model

in terms of a mirror “Chiral de Rham complex” (or CDR) defined by Malikov et al. in [1].

Via mirror symmetry, one can also derive various conjectural expressions relating the sheaf

cohomology of the mirror CDR to that of the original CDR on pairs of Calabi-Yau mirror

manifolds. An analysis of the half-twisted model on a non-Kähler group manifold with

torsion also allows one to draw conclusions about the corresponding sheaves of CDR (and

its mirror) that are consistent with mathematically established results by Ben-Bassat in [2]

on the mirror symmetry of generalised complex manifolds. These conclusions therefore

suggest an interesting relevance of the sheaf of CDR in the recent study of generalised

mirror symmetry.
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1. Introduction

The mathematical theory of “Chiral Differential Operators” or CDO’s is a fairly well-

developed subject that aims to provide a rigorous mathematical construction of conformal

fields theories, possibly associated with sigma models in two-dimensions, without resorting

to mathematically non-rigorous methods such as the path integral. It was first introduced

and studied in a series of seminal papers by Malikov et al. [1, 3 – 6], and in [7] by Beilinson

and Drinfeld, whereby a more algebraic approach to this construction was taken in the

latter. These developments have found interesting applications in various fields of geometry

and representation theory such as mirror symmetry [8] and the study of elliptic genera [9 –

11] etc. However, the explicit interpretation of the theory of CDO’s, in terms of the physical

models it is supposed to describe, has been somewhat unclear, that is until recently.

In the pioneering papers of Kapustin [12] and Witten [13], initial steps were taken to

provide a physical interpretation of some of the mathematical results in the general theory

of CDO’s. In [12], it was argued that on a Calabi-Yau manifold X, the mathematical

theory of a CDO known as the chiral de Rham complex or CDR for short, can be identified

with the infinite-volume limit of a half-twisted variant of the topological A-model. In [13],

the perturbative limit of a half-twisted (0, 2) sigma model with right-moving fermions was

studied, where its interpretation in terms of the theory of a CDO that is a purely bosonic

version of the CDR was elucidated. An explicit computation (on P1) was also carried out

by Frenkel et al. in [14] to verify mathematically, the identification of the CDR as the

half-twisted sigma model in perturbation theory.

Shortly thereafter, a generalisation of the model in [13] to include left-moving world-

sheet fermions valued in a holomorphic gauge bundle over the target space, was considered

by the present author in [15], that is, the perturbative aspects of a twisted heterotic (0, 2)

sigma model were being studied in [15]. The objective of [15] was to seek a physical inter-

pretation of the mathematical theory of a general class of CDO’s (constructed from generic

vertex superalgebras) that has been formally defined by Malikov et al. in [1, 6]. It was then

shown in [15] that the physical anomalies of the sigma model can be reinterpreted as an ob-

struction to a global definition of an associated sheaf of vertex superalgebras derived from

the free conformal field theory describing the model locally on X. It was also shown that

one can obtain a novel understanding of the sigma model one-loop beta function solely in

terms of holomorphic data. In addition, at the (2, 2) locus, the interpretation of the result-

ing half-twisted variant of the A-model in terms of a sheaf of CDR, was also made manifest

on an arbitrary (not necessarily Calabi-Yau) smooth manifold. The results in [15] therefore

serve as an alternative verification and generalisation of the specific findings established

earlier in [12].

In this paper, we shall study the perturbative aspects of a (0, 2) heterotic sigma model

with a different twist - at the (2, 2) locus, the twisted heterotic sigma model actually spe-

cialises to a half-twisted variant of the topological B-model instead. Our main objective is

to furnish a purely physical interpretation of the mirror chiral de Rham complex defined

by Malikov et al. in [1]. In doing so, we will be able to derive several important mathemat-

ical results that have not been computed anywhere in the literature before - an example of
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particular importance is the set of automorphism relations of this sheaf of mirror CDR, and

by considering the equivalence of elliptic genera under mirror symmetry of the underlying

untwisted (2, 2) models on Calabi-Yau manifolds, one can also derive various conjectural

expressions relating the sheaf cohomology of the original CDR to that of its mirror, on

mirror pairs of Calabi-Yau manifolds. Moreover, by analysing an explicit example of the

half-twisted B-model on a non-Kähler, parallelisable group manifold with torsion, one can

also draw conclusions about the corresponding sheaves of CDR (and its mirror) that are

consistent with the mathematics of mirror symmetry on generalised complex manifolds es-

tablished by Ben-Bassat in [2]. These conclusions therefore suggest an interesting relevance

of the sheaf of CDR in the study of generalised mirror symmetry. Like in [15], we will be

able to obtain, at various points in the paper, novel insights into the physics of the twisted

models via a reinterpretation of some established mathematical results in the theory of

CDO’s, and vice-versa.

Additional motivation for this work also come from the fact that the twisted heterotic

sigma model is relevant to the heterotic string - the twisted correlation functions are related

to the actual string correlation functions via spectral flow. Another relevant point to note

is that an isomorphic model has been considered by Sharpe in [16]. In [16], Sharpe analyses

the quantum correlation functions of the twisted model and derives an interestingly new

anomaly cancellation condition for the (2, 2) B-model from a (0, 2) perspective. Perhaps

certain results in [16] can be understood in the context of the mirror CDR as well.

Towards our end, we shall follow closely the approach taken in [15].

A brief summary and plan of the paper. A brief summary and plan of the paper is

as follows. First, in section 2, we will review the two-dimensional heterotic sigma model

with (0, 2) supersymmetry on a rank-r holomorphic gauge bundle E over a Kähler manifold

X. We will then perform a certain twist on the model which will serve to redefine the spins

of the relevant worldsheet fields such that the resulting Lagrangian will specialise to a

topological B-model Lagrangian at the (2, 2) locus.

Next, in section 3, we will focus on the space of physical operators of this twisted

heterotic sigma model. In particular, we will study the properties of the chiral algebra

furnished by these operators. In addition, we will show how the moduli of the chiral algebra

arises when we include a non-Kähler deformation of X. The geometrical properties of a

specific non-Kähler group manifold relevant to our analysis later in the paper, will also be

elaborated in this section.

In section 4, we will discuss, from a purely physical perspective, the anomalies of this

particular model. The main aim in doing so is to prepare for the observations and results

that we will make and find in the next section.

In section 5, we will introduce the notion of a sheaf of perturbative observables. An

alternative description of the chiral algebra of physical operators in terms of the elements of

a Cech cohomology group will also be presented. Thereafter, we will show that the twisted

model on a local patch of the target space can be described in terms of a free hybrid bc-βγ

system, where in order to give a complete description of the model on the entire target

space, it will first be necessary to study its local symmetries. Using the local symmetries,
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one can then glue together the free conformal field theories (each defined on a local patch

of the target space by the free hybrid bc-βγ system) to obtain a globally-defined sheaf of

CDO’s or vertex superalgebras which span a subset of the chiral algebra of the model. It

is at this juncture that one observes the mathematical obstruction to a global definition of

the sheaf (and hence the existence of the underlying theory) to be the physical anomaly

of the model itself. Via an example, we will be able to obtain a novel understanding of

the non-zero one-loop beta function of the twisted heterotic sigma model solely in terms

of holomorphic data.

In section 6, we will study the twisted model at the (2, 2) locus where E = TX, such

that the obstruction to a global definition of the sheaf of vertex superalgebras vanishes for

any smooth manifold X if one works locally on the worldsheet Σ. In doing so, we obtain a

purely mathematical description of the half-twisted variant of the topological B-model in

terms of the theory of the mirror CDR, that for a target space with vanishing first Chern

class such as a Calabi-Yau manifold, acquires the structure of a topological vertex algebra.

Using the CFT state-operator correspondence in the Calabi-Yau case, one can express

the elliptic genus in terms of the Cech cohomology of the mirror CDR. Consequently,

from the equivalence of elliptic genera under mirror symmetry of the underlying untwisted

(2, 2) models on Calabi-Yau manifolds, one can also derive various conjectural expressions

relating the Cech cohomology of the original CDR on X̃, to that of its mirror on X, where

X and X̃ are a pair of mirror Calabi-Yau’s.

In section 7, we will analyse, as examples, sheaves of mirror CDR that describe the

physics of the half-twisted B-model on two different smooth manifolds. The main aim

is to illustrate the rather abstract discussion in the preceding sections. By studying the

sheaves of mirror CDR on CP1, we find that a subset of the infinite-dimensional space of

physical operators furnishes an underlying superaffine Lie-algebra. As will be explained,

this observation is consistent with the definition of the mirror CDR as a sheaf of vertex

algebras that is isomorphic to the sheaf of CDR. Similar to section 5, we will be able to

obtain a novel understanding of the non-zero one-loop beta function of the half-twisted

B-model solely in terms of holomorphic data. Furthermore, for the half-twisted B-model

on a non-Kähler, parallelised, smooth manifold with torsion such as S3 × S1, a study of

the corresponding sheaf of mirror CDR reveals a direct relationship between the modulus

of sheaves and the level of the underlying SU(2) WZW theory.

In section 8, we will show, using the geometrical properties of S3 × S1 elaborated in

section 3 and the concept of fibrewise duality, how the relationship between the modulus of

sheaves and the level of the underlying SU(2) WZW theory (found in both the half-twisted

B-model on S3×S1 and the half-twisted A-model on a mirror S3×S1 in [15]), is consistent

with the mathematics of mirror symmetry on generalised complex manifolds established

by Ben-Bassat in [2].

Beyond perturbation theory. As pointed out in [13], instanton effects can change the

picture radically, triggering a spontaneous breaking of supersymmetry, hence making the

chiral algebra trivial as the elliptic genus vanishes. Hence, out of perturbation theory, the

sigma model may no longer be described by the theory of CDO’s. This non-perturbative
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consideration is beyond the scope of the present paper. However, we do hope to address it

in a future publication.

2. A twisted heterotic sigma model

2.1 The heterotic sigma model with (0, 2) supersymmetry

To begin, let us first recall the two-dimensional heterotic non-linear sigma model with

(0, 2) supersymmetry on a rank-r holomorphic gauge bundle E over a Kähler manifold X.

It governs maps Φ : Σ → X, with Σ being the worldsheet Riemann surface. By picking

local coordinates z, z̄ on Σ, and φi, φī on X, the map Φ can then be described locally

via the functions φi(z, z̄) and φī(z, z̄). Let K and K be the canonical and anti-canonical

bundles of Σ (the bundles of one-forms of types (1, 0) and (0, 1) respectively), whereby

the spinor bundles of Σ with opposite chiralities are given by K1/2 and K
1/2

. Let TX

and TX be the holomorphic and anti-holomorphic tangent bundle of X. The left-moving

fermi fields of the model consist of λa and λa, which are smooth sections of the bundles

K1/2 ⊗ Φ∗E and K1/2 ⊗ Φ∗E∗, respectively. On the other hand, the right-moving fermi

fields consist of ψi and ψī, which are smooth sections of the bundles K
1/2

⊗ Φ∗TX and

K
1/2

⊗ Φ∗TX , respectively. Here, ψi and ψī are superpartners of the scalar fields φi and

φī, while λa and λa are superpartners to a set of auxiliary scalar fields la and la, which are

in turn smooth sections of the bundles K1/2 ⊗ K
1/2

⊗ Φ∗E and K1/2 ⊗ K
1/2

⊗ Φ∗E∗. Let

g be the hermitian metric on X. The action is then given by

S =

∫

Σ
|d2z|

(
1

2
gij̄(∂zφ

i∂z̄φ
j̄ + ∂z̄φ

i∂zφ
j̄) + gij̄ψ

iDzψ
j̄ + λaDz̄λ

a

+F a
bij̄(φ)λaλ

bψiψj̄ − lal
a
)

, (2.1)

whereby i, ī = 1 . . . , n = dimCX, a = 1 . . . , r,1 |d2z| = idz ∧ dz̄, and F a
bij̄(φ) = Aa

bi,j̄(φ) is

the curvature 2-form of the holomorphic gauge bundle E with connection A. In addition,

Dz is the ∂ operator on K
1/2

⊗φ∗TX using the pull-back of the Levi-Civita connection on

TX, while Dz̄ is the ∂̄ operator on K1/2 ⊗Φ∗E using the pull-back of the connection A on

E . In formulas (using a local trivialisation of K
1/2

and K1/2 respectively), we have2

Dzψ
j̄ = ∂zψ

j̄ + Γj̄
l̄k̄

∂zφ
l̄ψk̄, (2.2)

and

Dz̄λ
a = ∂z̄λ

a + Aa
bi(φ)∂z̄φ

iλb. (2.3)

Here, Γj̄
l̄k̄

is the affine connection of X, while Aa
bi(φ) is the connection on E in component

form.

1As we will be studying the sigma model in the peturbative limit, worldsheet instantons are absent, and

one considers only (degree zero) constant maps Φ, such that
R
Σ

Φ∗c1(E) = 0. Since the selection rule from

the requirement of anomaly cancellation states that the number of λas must be given by
R
Σ

Φ∗c1(E)+r(1−g),

where g is the genus of Σ, we find that at string tree level, the number of λas must be given by r.
2Note that we have used a flat metric and hence vanishing spin connection on the Riemann surface Σ

in writing these formulas.
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The infinitesimal transformation of the fields generated by the supercharge Q+ under

the first right-moving supersymmetry, is given by

δφi = 0, δφī = ǭ−ψī,

δψī = 0, δψi = −ǭ−∂z̄φ
i,

δλa = 0, δλa = ǭ−la, (2.4)

δla = 0, δla = ǭ−

(
Dz̄λ

a + F a
bij̄(φ)λbψiψj̄

)
,

while the infinitesimal transformation of the fields generated by the supercharge Q+ under

the second right-moving supersymmetry, is given by

δφi = ǫ−ψi, δλa = ǫ−

(
la + Aa

bi(φ)λbψi
)

,

δψi = 0, δla = −ǫ−Aa
bi(φ)lbψi,

δφī = 0, δψī = −ǫ−∂z̄φ
ī, (2.5)

δλa = 0, δla = ǫ−∂z̄λa,

where ǫ− and ǭ− are anti-holomorphic sections of K
−1/2

. Since we are considering a

holomorphic vector bundle E , the supersymmetry algebra is trivially satisfied.3

2.2 Twisting the model

Classically, the action (2.1) and therefore the model that it describes, possesses a left-

moving flavour symmetry and a right-moving R-symmetry, giving rise to a U(1)L ×U(1)R
global symmetry group. Denoting (qL, qR) to be the left- and right-moving charges of the

fields under this symmetry group, we find that λa and λa have charges (±1, 0), ψī and ψi

have charges (0,±1), and la and la have charges (±1,±1) respectively. Quantum mechan-

ically however, these symmetries are anomalous because of non-perturbative worldsheet

instantons; the charge violations for the left- and right-moving global symmetries are given

by ∆qL =
∫
Σ Φ∗c1(E) and ∆qR =

∫
Σ Φ∗c1(TX), respectively.

In order to define a twisted variant of the model, the spins of the various fields need

to be shifted by a linear combination of their corresponding left- and right-moving charges

(qL, qR) under the global U(1)L ×U(1)R symmetry group; by considering a shift in the spin

S via S → S + 1
2 [(1 − 2s)qL + (2s̄ − 1)qR] (where s and s̄ are real numbers), the various

fields of the twisted model will transform as smooth sections of the following bundles:

λa ∈ Γ
(
K(1−s) ⊗ Φ∗E∗

)
, λa ∈ Γ (Ks ⊗ Φ∗E) ,

ψi ∈ Γ
(
K

(1−s̄)
⊗ Φ∗TX

)
, ψī ∈ Γ

(
K

s̄
⊗ Φ∗TX

)
, (2.6)

la ∈ Γ
(
K(1−s) ⊗ K

s̄
⊗ Φ∗E∗

)
, la ∈ Γ

(
Ks ⊗ K

(1−s̄)
⊗ Φ∗E

)
.

3The supersymmetry algebra is satisfied provided the (2, 0) part of the curvature vanishes i.e., Aa
b[i,j] −

Aa
c[iA

c
bj] = 0. For a real gauge field A of a unitary gauge group whereby A

†
i = Aī, this just means that E

must be a holomorphic vector bundle [21].
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Notice that for s = s̄ = 1
2 , the fields transform as smooth sections of the same tensored

bundles defining the original heterotic sigma model, i.e., we get back the untwisted model.

In order for a twisted model to be physically consistent, one must ensure that the new

Lorentz symmetry (which has been modified from the original due to the twist) continues

to be non-anomalous quantum mechanically. Note that similar to the untwisted case, the

U(1)L and U(1)R symmetries are anomalous in the quantum theory. The charge violations

on a genus-g Riemann surface Σ are given by

∆qL = r(1 − 2s)(1 − g) +

∫

Σ
Φ∗c1(E), (2.7)

∆qR = n(2s̄ − 1)(g − 1) +

∫

Σ
Φ∗c1(TX). (2.8)

If one has the condition c1(E) = c1(TX), one can see from (2.7) and (2.8) that an

example of a non-anomalous combination of global currents that one can use to twist the

model with is 1
2(JL − JR), where s = s̄ = 0. If one has the additional condition that

c1(E) = c1(TX) = 0, i.e., X is a Calabi-Yau, one can also consider the non-anomalous

current combination −1
2(JL + JR), where s = 1 and s̄ = 0.

Note that the former twist was considered in [15], where it was shown that the model

one will get at the (2, 2) locus is a half-twisted variant of the topological A-model. Now,

recall that we would like to study a twisted heterotic model which can be related to a

half-twisted variant of the topological B-model when E = TX at the (2, 2) locus. Since

the former twist maps to the latter twist when we make the replacement JL → −JL,

one should study the twisted variant of the heterotic sigma model defined by s = 1 and

s̄ = 0, i.e., we should consider the twisted model associated with the current combination

−1
2(JL + JR). As required, the various fields in this twisted model of interest will thus

transform as smooth sections of the following bundles:

λa ∈ Γ
(
Φ∗E∨

)
, λa

z ∈ Γ (K ⊗ Φ∗E) ,

ψi
z̄ ∈ Γ

(
K ⊗ Φ∗TX

)
, ψī ∈ Γ

(
Φ∗TX

)
, (2.9)

lazz̄ ∈ Γ
(
K ⊗ K ⊗ Φ∗E

)
, la ∈ Γ

(
Φ∗E∨

)
,

where E∨ is the bundle dual to E . Notice that we have included additional indices in the

above fields so as to reflect their new geometrical characteristics on Σ; fields without a z or

z̄ index transform as worldsheet scalars, while fields with a z or z̄ index transform as (1, 0)

or (0, 1) forms on the worldsheet. In addition, as reflected by the a, i, and ī indices, all

fields continue to be valued in the pull-back of the corresponding bundles on X. Thus, the

action of the twisted variant of the two-dimensional heterotic sigma model will be given by

Stwist =

∫

Σ
|d2z|

(
1

2
gij̄(∂zφ

i∂z̄φ
j̄ + ∂z̄φ

i∂zφ
j̄) + gij̄ψ

i
z̄Dzψ

j̄ + λaDz̄λ
a
z

+F a
bij̄(φ)λaλ

b
zψ

i
z̄ψ

j̄ − lal
a
zz̄

)
. (2.10)

A twisted theory is the same as an untwisted one when defined on a Σ which is flat.

Hence, locally (where one has the liberty to select a flat metric), the twisting does nothing

– 7 –
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at all. However, what happens non-locally may be non-trivial. In particular, note that

globally, the supersymmetry parameters ǫ− and ǭ− must now be interpreted as sections of

different line bundles; in the twisted model, the transformation laws given by (2.4) and (2.5)

are still valid, and because of the shift in the spins of the various fields, we find that for

the laws to remain physically consistent, ǭ− must now be a function on Σ while ǫ− must

be a section of the non-trivial bundle K
−1

. One can therefore canonically pick ǭ− to be a

constant and ǫ− to vanish, i.e., the twisted variant of the two-dimensional heterotic sigma

model has just one canonical global fermionic symmetry generated by the supercharge Q+.

Hence, the infinitesimal transformation of the (twisted) fields under this single canonical

symmetry must read (after setting ǭ− to 1)

δφi = 0, δφī = ψī,

δψī = 0, δψi
z̄ = −∂z̄φ

i,

δλa
z = 0, δλa = la, (2.11)

δla = 0, δlazz̄ =
(
Dz̄λ

a
z + F a

bij̄(φ)λb
zψ

i
z̄ψ

j̄
)

.

From the (0, 2) supersymmetry algebra, we have Q
2
+ = 0. In addition, (after twisting) Q+

transforms as a scalar. Consequently, we find that the symmetry is nilpotent i.e., δ2 = 0

(off-shell), and behaves as a BRST-like symmetry.

Note at this point that the transformation laws of (2.11) can be expressed in terms

of the BRST operator Q+, whereby δW = {Q+,W} for any field W . One can then show

that the action (2.10) can be written as

Stwist =

∫

Σ
|d2z|{Q+, V } + Stop (2.12)

where

V = −gij̄ψ
i
z̄∂zφ

j̄ − λal
a
zz̄, (2.13)

while

Stop =
1

2

∫

Σ
gij̄

(
∂zφ

i∂z̄φ
j̄ − ∂z̄φ

i∂zφ
j̄
)

(2.14)

is
∫
Σ Φ∗(K), the integral of the pull-back to Σ of the (1, 1) Kähler form K = i

2gij̄dφi ∧dφj̄ .

Notice that since Q
2
+ = 0, the first term on the r.h.s. of (2.12) is invariant under the

transformation generated by Q+. In addition, because dK = 0 on a Kähler manifold,∫
Σ Φ∗(K) depends only on the cohomology class of K and the homotopy class of Φ∗(Σ),

i.e., the class of maps Φ. Consequently, Stop is a topological term, invariant under local

field deformations and the transformation δ. Thus, the action given in (2.12) is invariant

under the BRST symmetry as required. Moreover, for the transformation laws of (2.11)

to be physically consistent, Q+ must have charge (0,+1) under the global U(1)L × U(1)R
gauge group. Since V has a corresponding charge of (0,−1), while K has zero charge,

Stwist in (2.12) continues to be invariant under the U(1)L ×U(1)R symmetry group at the

classical level.
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As mentioned in the introduction, we will be studying the twisted model in perturbation

theory, where one does an expansion in the inverse of the large-radius limit. Hence, only

the degree-zero maps of the term
∫
Σ Φ∗(K) contribute to the path integral factor e−Stwist .

Therefore, in the perturbative limit, one can set
∫
Σ Φ∗(K) = 0 since dK = 0, and the

model will be independent of the Kähler structure of X. This also means that one is free

to study an equivalent action obtained by setting Stop in (2.12) to zero. After eliminating

the lal
a
zz̄ term via its own equation of motion lazz̄ = 0, the equivalent action in perturbation

theory reads

Spert =

∫

Σ
|d2z|

(
gij̄∂zφ

j̄∂z̄φ
i + gij̄ψ

i
z̄Dzψ

j̄ + λaDz̄λ
a
z + F a

bij̄λaλ
b
zψ

i
z̄ψ

j̄
)

, (2.15)

where it can also written as

Spert =

∫

Σ
|d2z|{Q+, V }. (2.16)

Note that the original symmetries of the theory persist despite limiting ourselves to

perturbation theory; even though Stop = 0, from (2.16), one finds that Spert is invariant

under the nilpotent BRST symmetry generated by Q+. It is also invariant under the

U(1)L × U(1)R global symmetry. Spert shall henceforth be the action of interest in all our

subsequent discussions.

3. Chiral algebras from the twisted heterotic sigma model

3.1 The chiral algebra

Classically, the model is conformally invariant. The trace of the stress tensor from Spert

vanishes, i.e., Tzz̄ = 0. The other non-zero components of the stress tensor, at the classical

level, are given by

Tzz = gij̄∂zφ
i∂zφ

j̄ + λa
zDzλa, (3.1)

and

Tz̄z̄ = gij̄∂z̄φ
i∂z̄φ

j̄ + gij̄ψ
i
z̄

(
∂z̄ψ

j̄ + Γj̄
l̄k̄

∂z̄φ
l̄ψk̄

)
. (3.2)

Furthermore, one can go on to show that

Tz̄z̄ = {Q+,−gij̄ψ
i
z̄∂z̄φ

j̄}, (3.3)

and (since la = 0 from its equation of motion)

[Q+, Tzz] =
(
gij̄Dzψ

j̄ + F a
bij̄(φ)λaλ

b
zψ

j̄
)

∂zφ
i

= 0 (on-shell). (3.4)

From (3.4) and (3.3), we see that all components of the stress tensor are Q+-invariant;

Tzz is an operator in the Q+-cohomology while Tz̄z̄ is Q+-exact and thus trivial in Q+-

cohomology. The fact that Tzz is not Q+-exact even at the classical level implies that the

twisted model is not a 2D topological field theory; rather, it is a 2D conformal field theory.

This because the original model has (0, 2) and not (2, 2) supersymmetry. On the other
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hand, the fact that Tz̄z̄ is Q+-exact has some non-trivial consequences on the nature of the

local operators in the Q+-cohomology. Let us discuss this further.

We say that a local operator O inserted at the origin has dimension (n,m) if under

a rescaling z → λz, z̄ → λ̄z (which is a conformal symmetry of the classical theory), it

transforms as ∂n+m/∂zn∂z̄m, that is, as λ−nλ̄−m. Classical local operators have dimensions

(n,m) where n and m are non-negative integers.4 However, only local operators with

m = 0 survive in Q+-cohomology. The reason for the last statement is that the rescaling

of z̄ is generated by L̄0 =
∮

dz̄ z̄Tz̄z̄. As we noted in the previous paragraph, Tz̄ z̄ is of the

form {Q+, . . . }, so L̄0 = {Q+, V0} for some V0. If O is to be admissible as a local physical

operator, it must at least be true that {Q+,O} = 0. Consequently, [L̄0,O] = {Q+, [V0,O]}.

Since the eigenvalue of L̄0 on O is m, we have [L̄0,O] = mO. Therefore, if m 6= 0, it follows

that O is Q+-exact and thus trivial in Q+-cohomology.

By a similar argument, we can show that O, as an element of the Q+-cohomology,

varies homolomorphically with z. Indeed, since the momentum operator (which acts on

O as ∂z̄) is given by L̄−1, the term ∂z̄O will be given by the commutator [L̄−1,O]. Since

L̄−1 =
∮

dz̄ Tz̄z̄, we will have L̄−1 = {Q+, V−1} for some V−1. Hence, because O is physical

such that {Q+,O} = 0, it will be true that ∂z̄O = {Q+, [V−1,O]} and thus vanishes in

Q+-cohomology.

The observations that we have made so far are based solely on classical grounds. The

question that one might then ask is whether these observations will continue to hold when

we eventually consider the quantum theory. The key point to note is that if it is true

classically that a cohomology vanishes, it should continue to do so in perturbation theory,

when quantum effects are small enough. Since the above observations were made based

on the classical fact that Tz̄z̄ vanishes in Q+-cohomology, they will continue to hold at the

quantum level. Let us look at the quantum theory more closely.

The quantum theory. Quantum mechanically, the conformal structure of the theory

is violated by a non-zero one-loop β-function; renormalisation adds to the classical action

Spert a term of the form:

∆1−loop = c1 Rij̄∂zφ
j̄ψi

z̄ + c2 gij̄F a
bij̄λal

b
zz̄ (3.5)

for some divergent constants c1,2, where Rij̄ is the Ricci tensor of X. In the Calabi-

Yau case, one can choose a Ricci-flat metric and a solution to the Uhlenbeck-Yau equation,

gij̄F a
bij̄ = 0, such that ∆1−loop vanishes and the original action is restored. In this case, the

classical observations made above continue to hold true. On the other hand, in the “massive

models” where c1(X) 6= 0, there is no way to set ∆1−loop to zero. Conformal invariance is

necessarily lost, and there is nontrivial RG running. However, one can continue to express

Tz̄z̄ as {Q+, . . . }, i.e., it remains Q+-exact, and thus continues to vanish in Q+-cohomology.

Hence, the above observations about the holomorphic nature of the local operators having

dimension (n, 0) continue to hold in the quantum theory.

4Anomalous dimensions under RG flow may shift the values of n and m quantum mechanically, but the

spin given by (n − m), being an intrinsic property, remains unchanged.
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We would also like to bring to the reader’s attention another important feature of the

Q+-cohomology at the quantum level. Recall that classically, we had [Q+, Tzz] = 0 via the

classical equations of motion. Notice that the classical expression for Tzz is not modified

at the quantum level (at least up to one-loop), since even in the non-Calabi-Yau case, the

additional term of ∆1−loop in the quantum action does not contribute to Tzz. However,

due to one-loop corrections to the action of Q+, we have, at the quantum level

[Q+, Tzz] = ∂z(Rij̄∂zφ
iψj̄) + . . . (3.6)

(where ‘. . . ’ is also a partial derivative of some terms with respect to z). Note that the term

on the r.h.s. of (3.6) cannot be eliminated through the equations of motion in the quantum

theory. Neither can we modify Tzz (by subtracting a total derivative term) such that

it continues to be Q+-invariant. This implies that in a ‘massive’ model, operators do not

remain in the Q+-cohomology after general holomorphic coordinate transformations on the

worldsheet, i.e., the model is not conformal at the level of the Q+-cohomology.5 However,

Tzz continues to be holomorphic in z up to Q+-trivial terms; from the conservation of

the stress tensor, we have ∂z̄Tzz = −∂zTzz̄, and Tzz̄, while no longer zero, is now given

by Tzz̄ = {Q+, Gzz̄} for some Gzz̄, i.e., ∂zTzz̄ continues to be Q+-exact, and ∂z̄Tzz ∼ 0

in Q+-cohomology. The holomorphy of Tzz, together with the relation (3.6), has further

implications for the Q+-cohomology of local operators; by a Laurent expansion of Tzz,
6

one can use (3.6) to show that [Q+, L−1] = 0. This means that operators remain in the

Q+-cohomology after global translations on the worldsheet. In addition, recall that Q+ is

a scalar with spin zero in the twisted model. As shown few paragraphs before, we have the

condition L̄0 = 0. Let the spin be S, where S = L0 − L̄0. Therefore, [Q+, S] = 0 implies

that [Q+, L0] = 0. In other words, operators remain in the Q+-cohomology after global

dilatations of the worldsheet coordinates.

One can also make the following observations about the correlation functions of these

local operators. Firstly, note that
〈
{Q+,W}

〉
= 0 for any W , and recall that for any

local physical operator Oα, we have {Q+,Oα} = 0. Since the ∂z̄ operator on Σ is given

by L̄−1 =
∮

dz̄ Tz̄z̄, where Tz̄z̄ = {Q+, . . . }, we find that ∂z̄ 〈O1(z1)O2(z2) . . .Os(zs)〉 is

given by
∮

dz̄
〈
{Q+, . . . } O1(z1)O2(z2) . . .Os(zs)

〉
=

∮
dz̄

〈
{Q+, · · ·

∏
i Oi(zi)}

〉
= 0. Thus,

the correlation functions are always holomorphic in z. Secondly, Tzz̄ = {Q+, Gzz̄} for

some Gzz̄ in the ‘massive’ models. Hence, the variation of the correlation functions due

to a change in the scale of Σ will be given by
〈
O1(z1)O2(z2) . . .Os(zs){Q+, Gzz̄}

〉
=〈

{Q+,
∏

i Oi(zi) · Gzz̄}
〉

= 0. In other words, the correlation functions of local physical

operators will continue to be invariant under arbitrary scalings of Σ. Thus, the correlation

functions are always independent of the Kähler structure on Σ and depend only on its

complex structure.

A holomorphic chiral algebra A. Let O(z) and Õ(z′) be two Q+-closed operators such

that their product is Q+-closed as well. Now, consider their operator product expansion

5In section 5.7, we will examine more closely, from a different point of view, the one-loop correction to

the action of Q+ associated with the beta-function, where (3.6) will appear in a different guise.
6Since we are working modulo Q+-trivial operators, it suffices for Tzz to be holomorphic up to Q+-trival

terms before an expansion in terms Laurent coefficients is permitted.
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or OPE:

O(z)Õ(z′) ∼
∑

k

fk(z − z′)Ok(z′), (3.7)

in which the explicit form of the coefficients fk must be such that the scaling dimensions

and U(1)L × U(1)R charges of the operators agree on both sides of the OPE. In general,

fk is not holomorphic in z. However, if we work modulo Q+-exact operators in passing to

the Q+-cohomology, the fk’s which are non-holomorphic and are thus not annihilated by

∂/∂z̄, drop out from the OPE because they multiply operators Ok which are Q+-exact.

This is true because ∂/∂z̄ acts on the l.h.s. of (3.7) to give terms which are cohomologically

trivial.7 In other words, we can take the fk’s to be holomorphic coefficients in studying

the Q+-cohomology. Thus, the OPE of (3.7) has a holomorphic structure.

In summary, we have established that the Q+-cohomology of holomorphic local opera-

tors has a natural structure of a holomorphic chiral algebra (as defined in the mathematical

literature) which we shall henceforth call A; it is always preserved under global transla-

tions and dilatations, though (unlike the usual physical notion of a chiral algebra) it may

not be preserved under general holomorphic coordinate transformations on the Riemann

surface Σ. Likewise, the OPE’s of the chiral algebra of local operators obey the usual

relations of holomorphy, associativity, and invariance under translations and scalings of z,

but not necessarily invariance under arbitrary holomorphic reparameterisations of z. The

local operators are of dimension (n,0) for n ≥ 0, and the chiral algebra of such operators

requires a flat metric up to scaling on Σ to be defined.8 Therefore, the chiral algebra that

we have obtained can only be globally-defined on a Riemann surface of genus one, or be

locally-defined on an arbitrary but curved Σ. To define the chiral algebra globally on a

surface of higher genus requires more in-depth analysis, and is potentially obstructed by an

anomaly involving c1(Σ) and (c1(E)+c1(X)) that we will discuss in sections 4 and 5.6. Last

but not least, as is familiar for chiral algebras, the correlation functions of these operators

depend on Σ only via its complex structure. The correlation functions are holomorphic in

the parameters of the theory and are therefore protected from perturbative corrections.

3.2 The moduli of the chiral algebra

We shall now discuss the moduli of the chiral algebra A. Note that the chiral algebra

does depend on the complex structure of X because it enters in the definition of the fields

and the fermionic symmetry transformation generated by Q+. In addition, the moduli

also depends on a certain type of cohomology class. We shall now determine what this

cohomology class is. To this end, we shall consider adding to Spert, a term which will

represent a modulus of A.

To proceed, let T = 1
2Tijdφi ∧ dφj be any two-form on X that is of type (2, 0).9 The

7Since {Q+,O} = 0, we have ∂z̄O = {Q+, V (z)} for some V (z), as argued before. Hence ∂z̄O(z)· eO(z′) =

{Q+, V (z) eO(z′)}.
8Notice that we have implicitly assumed the flat metric on Σ in all of our analysis thus far.
9As noted in [15], the restriction of T to be a gauge field of type (2, 0), will enable us to associate the

moduli of the chiral algebra with the moduli of sheaves of vertex superalgebras.
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term that deforms Spert will then be given by

ST =

∫

Σ
|d2z|{Q+, Tijψ

i
z̄∂zφ

j}. (3.8)

By construction, ST is Q+-invariant. Moreover, since it has vanishing charge, it is also

invariant under the global U(1)L × U(1)R symmetry. Hence, as required, the addition of

ST preserves the classical symmetries of the theory. Explicitly, we then have

ST =

∫

Σ
|d2z|

(
Tij,k̄ψ

k̄ψi
z̄∂zφ

j − Tij∂z̄φ
i∂zφ

j
)

, (3.9)

where Tij,k̄ = ∂Tij/∂φk̄. Note that since |d2z| = idz ∧ dz̄, we can write the second term on

the r.h.s. of (3.9) as

S
(2)
T =

i

2

∫

Σ
Tijdφi ∧ dφj = i

∫

Σ
Φ∗(T ). (3.10)

Recall that in perturbation theory, we are considering degree-zero maps Φ with no multi-

plicity. Hence, for S
(2)
T to be non-vanishing, T must not be closed, i.e. dT 6= 0. In other

words, one must have a non-zero flux H = dT . As T is of type (2, 0), H will be a three-form

of type (3, 0) ⊕ (2, 1).

Notice here that the first term on the r.h.s. of (3.9) is expressed in terms of H, since

Tij,k̄ is simply the (2, 1) part of H. In fact, S
(2)
T can also be written in terms of H as

follows. Suppose that C is a three-manifold whose boundary is Σ and over which the map

Φ : Σ → X extends. Then, if T is globally-defined as a (2, 0)-form, the relation H = dT

implies, via Stoke’s theorem, that

S
(2)
T = i

∫

C
Φ∗(H). (3.11)

Hence, we see that ST can be expressed solely in terms of the three-form flux H (modulo

terms that do not affect perturbation theory). A relevant fact for the present paper is that

H represents a class in the Cech cohomology group H1(X,Ω2,cl
X ), where Ω2,cl

X is the sheaf

of ∂-closed (2, 0)-forms on X. This has been shown in [13] and reviewed in [15]. Thus, the

modulus of the chiral algebra is represented by a class in H1(X,Ω2,cl
X ).

One last thing to note is that we do not actually want to limit ourselves to the case

where T is globally-defined; as is clear from (3.8), if T were to be globally-defined, ST and

therefore the modulus of the chiral algebra would vanish in Q+-cohomology. Fortunately,

the r.h.s. of (3.11) makes sense as long as H is globally-defined, with the extra condition

that H be closed, since C cannot be the boundary of a four-manifold.10 Therefore, it

suffices for T to be locally-defined such that H = dT is true only locally . Hence, T must be

interpreted a a two-form gauge field in string theory (or a non-trivial connection on gerbes

in mathematical theories). This has been emphasised in a similar context in [13, 15].

10From homology theory, the boundary of a boundary is zero. Hence, since Σ exists as the boundary of

C, the three-manifold C itself cannot be a boundary of a higher-dimensional four-manifold.
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3.3 The moduli as a non-Kähler deformation of X

As shown above, in order to incorporate the moduli so that we can obtain a family of chiral

algebras, we need to turn on the three-form H-flux. As was shown in [13, 15], this term

results in a non-Kähler deformation of the target space X. Thus, X will be a complex,

hermitian manifold in all our following discussions. For brevity, we shall simply state the

results derived in [15] that are essential to the present paper.

Firstly, for a complex, hermitian, non-Kähler manifold, one can define a (1, 1)-form

ωT , which is an analog of a Kähler (1, 1)-form ω on a Kähler manifold. In contrast to ω,

which obeys ∂ω = ∂̄ω = 0, ωT obeys the weaker condition ∂̄∂ωT = 0 instead.

Secondly, if we are to consider an example of a unitary sigma model (as we will do

so in section 7.2), H must be restricted to just (2, 1)-forms. In addition, it must also be

expressible as 2i∂ωT , i.e., ωT defines the torsion H of X.

Consequently, we see that a non-vanishing H will mean that ∂ωT 6= 0. Thus, by

turning on the moduli of the chiral algebra via a deformation ST of the action Spert by the

three-form flux H, one will effectively induce a non-Kähler deformation of the target space

X as claimed.

3.4 An example of a non-Kähler complex manifold with torsion

We shall now describe an example of a non-Kähler complex manifold with torsion which

will play a central role in sections 7.2 and 8 as the target space of a supersymmetric sigma

model. To this end, we shall summarise some of the relevant results derived in [13] (where

the geometrical properties of the manifold have been elucidated in some detail).

The example that we will be considering is the group manifold X = S1 × S3. Despite

the geometrical simplicity of this manifold, its relevance to WZW models makes it rather

interesting from the viewpoint of conformal field theory [24, 25]. X is also interesting from

the mathematical perspective - it serves as the simplest non-trivial example of what is

known in the mathematical literature as a twisted generalised complex manifold, and has

been considered in the recent study of generalised complex geometry [26]. In fact, X will

also play a role in the mirror symmetry of (compact) twisted generalised complex manifolds

as we will show in section 8.

First, note that the complex structure of X can be constructed as follows. By com-

posing the (trivial) projection onto the second factor X → S3 with the (non-trivial) Hopf

fibration π : S3 → S2 ∼= CP1, whose fibres are copies of S1, X can viewed as a (non-trivial)

fibration of CP1 with fibres E = S1 × S1. Giving E = T2 the structure of a complex

Riemann surface of genus one, X becomes a complex manifold.

Alternatively, X can be constructed as C2/Z, where Z acts on coordinates zi, i = 1, 2

of C2 by zi → λnzi, with λ a nonzero complex number of modulus less than 1. The choice of

λ determines the complex structure of E in the former description and therefore that of X.

The two descriptions are related by simply regarding the zi’s as homogeneous coordinates

of CP1.

Second, it has been shown and explained in [13] that as required, one can find a

hermitian (1, 1)-form ωT on X that obeys ∂∂̄ωT = 0 (and corresponds to real λ). It is
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given by

ωT = dt ∧ ζ + π∗(ω0), (3.12)

where dt is a one-form on X that is invariant under a U(1) symmetry which acts by rotation

of S1, ζ is a unique U(2)-invariant one-form where U(2) is a symmetry which acts on S3,

and ω0 is an SO(3)-invariant form on S2 that integrates to 1. One way to prove that

∂∂̄ωT = 0, is to note that this is the same as d((∂̄ − ∂)ω/2), and so on a four-manifold

without boundary such as S1 × S3, it will integrate to zero. Since ωT and therefore ∂∂̄ωT

are U(1) × U(2)-invariant by construction, ∂∂̄ωT can only integrate to zero if it vanishes

pointwise.

Third, notice that the full symmetry group of X is actually U(1)×SO(4), where SO(4)

is the full rotation symmetry of S3. One can in fact define a U(1)×SO(4)-invariant metric

on S1 × S3. Such a metric will be determined by two positive numbers, namely the radii

of the two factors S1 and S3. More can be said about these two parameters as follows.

The ratio of radii of S1 and S3 is determined by the choice of dt (since dt determines the

radius r =
∫
S1 dt of S1 for a particular S3). The choice of dt is also correlated with the

choice of complex structure, since ωT must be of type (1, 1). Hence, when the complex

structure of S1×S3 is chosen, the ratio of radii is fixed. Note that one is free to rescale the

S1 and S3 radii by a common positive constant by multiplying the sigma model action by

this constant, since this will leave the complex structure invariant. In short, the complex

structure determines the ratio of radii, and there is one overall free parameter determined

by this common positive constant. As we will see momentarily, this free parameter must

be related to the level k of an underlying WZW model associated with the supersymmetric

sigma model under study.

Now let us write down H = ReH, the curvature of the B-field. As shown in [13],

we have H = ζ ∧ π∗(ω0). It follows that
∫
S3 H = 1 and in particular H is topologically

non-trivial. Therefore, to obtain a consistent quantum theory, we must multiply the sigma

model action by a constant chosen so that
∫
S3 H = 2πk for some integer k,11 which must

be positive so that the hermitian metric of S1 ×S3 is positive. This constant is simply the

common positive constant which determines the overall free parameter mentioned in the

previous paragraph.

How then is this common positive constant which determines the overall free parameter,

related to the level k of an underlying WZW model? As explained in [24, 25], the U(1) ×

SO(4)-invariant supersymmetric sigma model of S1 × S3 is simply a product of a WZW

model of the group SU(2) ∼= S3 with a free field theory,12 and the level of the WZW model

is k. In fact, as we will show from the point of view of the perturbative theory of CDO’s in

an example in section 7.2, the parameter k is a complex parameter associated with H1(S1×

S3,Ω2,cl) ∼= C, and thus from the discussion in section 3.2 of [15], we learn that k must

actually be an integer in order for the model to be well-defined non-perturbatively. This

is consistent with the observation made in the preceding paragraph. Another important

11This is to ensure that the theory which the action represents does not depend on the way it is being

parameterised.
12The free field theory will be described in greater detail in section 7.2.
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point to note is that since the overall free parameter determines the scale of the radii of

S1 and S3, we see from the representation of X as a T2 fibration of CP1, that the level k

will also determine the Kähler moduli of the fibre E = T2 in X.

The above facts about X = S1×S3 will be essential to our analysis in section 8, where

we make first-contact with the mirror symmetry of twisted generalised complex manifolds,

and show that our results are consistent with the recent mathematical observations made

by Ben-Bassat in [2].

4. Anomalies of the twisted heterotic sigma model

In this section, we will study the anomalies of the twisted heterotic sigma model. In

essence, the model will fail to exist in the quantum theory if the anomaly conditions are

not satisfied. We aim to determine what these conditions are. In this discussion, we shall

omit the additional term ST as anomalies do not depend on continuously varying couplings

such as this one.

To begin, let us first note from the action Spert in (2.15), that the kinetic energy term

quadratic in the fermi fields ψi and ψī is given by (ψ,Dψ) =
∫
|d2z|gij̄ψ

iDψj̄ , where D

is the ∂ operator on Σ acting on sections Φ∗(TX), constructed using a pull-back of the

Levi-Civita connection on TX. The other kinetic energy term quadratic in the fermi fields

λa and λa is given by (λ,Dλ) =
∫
|d2z|λaDλa, where D is the ∂̄ operator on Σ acting

on sections K ⊗ Φ∗(E), constructed using a pull-back of the gauge connection A on E .

(Notice that we have omitted the z and z̄ indices of the fields as they are irrelevant in

the present discussion.) By picking a spin structure on Σ, one can equivalently interpret

D and D as the Dirac operator and its complex conjugate on Σ, acting on sections of

V = K
−1/2

⊗ Φ∗(TX) and W = K1/2 ⊗ Φ∗(E) respectively, where K is the canonical

bundle of Σ and K its complex conjugate.

Next, note that the anomaly arises as an obstruction to defining the functional Grass-

mann integral of the action quadratic in the Fermi fields λa, λa, and ψi, ψī, as a general

function on the configuration space C of inequivalent connections [27]. Via the last para-

graph, the Grassmann integral is given by the product of the determinant of D with the

determinant of D. This can also be expressed as the determinant of D + D. As argued

in [27], one must think of the functional integral as a section of a complex determinant line

bundle L over C. Only if L is trivial would the integral be a global section and therefore

a function on C. Hence, the anomaly is due to the non-triviality of L. The bundle L

can be characterised completely by its restriction to a non-trivial two-cycle in C such as a

two-sphere [28].

To be more precise, let us consider a family of maps Φ : Σ → X, parameterised by a

two-sphere base which we will denote as B. In computing the path integral, we actually

want to consider the universal family of all maps from Σ to X. This can be represented

by a single map Φ̂ : Σ × B → X. The quantum path integral is anomaly-free if L, as a

complex line bundle over B, is trivial. Conversely, if L is trivial, it can be trivialised by a

local Green-Schwarz anomaly-cancellation mechanism and the quantum theory will exist.
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From the theory of determinant line bundles, we find that the basic obstruction to

triviality of L is its first Chern class. By an application of the family index theorem to

anomalies [29, 30], the first Chern class of L is given by π(ch2(W) − ch2(V)), whereby

π : H4(Σ × B) → H2(B). Note that the anomaly lives in H4(Σ × B) and not H2(B);

π(ch2(W)− ch2(V)) vanishes if (ch2(W)− ch2(V)) in H4(Σ×B) vanishes before it is being

mapped to H2(B). However, if (ch2(W) − ch2(V)) 6= 0 but π(ch2(W) − ch2(V)) = 0, then

even though L is trivial, it cannot be trivialised by a Green-Schwarz mechanism.

To evaluate the anomaly, first note that we have a Chern character identity ch(E⊗F ) =

ch(E)ch(F ), where E and F are any two bundles. Hence, by tensoring Φ∗(E) with K1/2 to

obtain W, we get an additional term −1
2c1(Σ)c1(E). Next, note that ch2(E) = ch2(E), and

by tensoring Φ∗(TX) with K
−1/2

to obtain V, we get an additional term 1
2c1(Σ)c1(TX).

Therefore, the condition for vanishing anomaly will be given by

0 = −
1

2
c1(Σ)(c1(E) + c1(TX)) = ch2(E) − ch2(TX). (4.1)

The first condition means that we can either restrict ourselves to Riemann surfaces Σ with

c1(Σ) = 0 and (c1(E) + c1(TX)) 6= 0, or allow Σ to be arbitrary while (c1(E) + c1(TX)) =

0. Notice also that both the anomalies automatically vanish if the bundles TX and E are

trivial such that cn(TX) = cn(E) = 0 for any n ≥ 1, while the second anomaly vanishes

if E = TX. The latter condition will be important when we discuss what happens at the

(2, 2) locus in section 6.

The characteristic class (ch2(E) − ch2(TX)) corresponds to an element of the Cech

cohomology group H2(X,Ω2,cl
X ).13 We will encounter it in this representation in sections

5.5 and 5.6. Similiarly, as explained in the footnote, (c1(E) + c1(X)) corresponds to an

element of H1(X,Ω1,cl
X ), while c1(Σ) corresponds to a class in H1(Σ,Ω1,cl

X ). These will make

a later appearance as well.

Note that the (ch2(E) − ch2(TX)) anomaly appears in a heterotic sigma model with

(0, 2) supersymmetry regardless of any topological twisting. The 1
2c1(Σ)(c1(E) + c1(TX))

anomaly however, only occurs in a heterotic (0, 2) theory that has been twisted.

Additional observations. Recall from section 3.1 that the chiral algebra of local holo-

morphic operators, requires a flat metric up to scaling on Σ to be globally-defined. There-

fore, it can be defined over all of Σ for genus one. The obstruction to its global definition

on Σ of higher genera is captured by the 1
2c1(Σ)(c1(E) + c1(TX)) anomaly. This can be

seen as follows.

13As had been shown in [13], ch2(TX) can be interpreted as an element of H2(X, Ω2,cl

X ), while ck(TX)

can be interpreted as an element of H1(X, Ω1,cl

X ). Using similiar arguments, we can also show that ch2(E)

corresponds to an element of H2(X, Ω2,cl

X ) as follows. On any complex hermitian manifold, ch2(E) can be

represented by a closed form of type (2, 2). This can be seen by picking any connection on the holomorphic

vector bundle E over X, whose (0, 1) part is the natural ∂̄ operator of this bundle. Since ∂̄2 = 0, the curvature

of such a connection is of type (2, 0) ⊕ (1, 1). However, as discussed in footnote 3, the (2, 0) part of the

curvature must vanish. Hence, the curvature is of type (1, 1). Therefore, for every k ≥ 0, ck(E) is described

by a closed form of type (k, k). Thus, via the Cech-Dolbeault isomorphism, ck(E) represents an element of

Hk(X, Ωk,cl

X ). In particular, c1(E) represents an element of H1(X, Ω1,cl

X ), and ch2(E) = 1
2
(c2

1(E) − 2c2(E))

represents an element of H2(X, Ω2,cl

X ).
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Note that at this stage, we are considering the case where E 6= TX. So in general,

c1(E) 6= −c1(TX). In such an event, the anomaly depends solely on c1(Σ). If c1(Σ) 6= 0,

such as when Σ is curved or of higher genera, the Ricci scalar R of Σ is non-vanishing.

Thus, the expression of Tzz̄ will be modified, such that

Tzz̄ = {Q+, Gzz̄} +
c

2π
R, (4.2)

where c is a non-zero constant related to the central charge of the sigma model. The

additional term on the r.h.s. of (4.2), given by a multiple of R, represents a soft conformal

anomaly on the worldsheet due to a curved Σ. R scales as a (1, 1) operator as required.

There are consequences on the original nature of the Q+-cohomology of operators due

to this additional term. Recall from section 3.1 that the holomorphy of Tzz holds so long

as ∂zTzz̄ ∼ 0. However, from the modified expression of Tzz̄ in (4.2), we now find that

∂zTzz̄ ≁ 0. Hence, the invariance of the Q+-cohomology of operators under translations on

the worldsheet, which requires Tzz to be holomorphic in z, no longer holds. Therefore, the

local holomorphic operators fail to define a chiral algebra that is globally valid over Σ, since

one of the axioms of a chiral algebra is invariance under translations on the worldsheet.

On the other hand, the second term on the r.h.s. of (4.2), being a c-number anomaly,

will affect only the partition function and not the normalised correlation functions. Thus, as

argued in section 3.1, the correlation functions of local holomorphic operators will continue

to depend on Σ only via its complex structure (as is familiar for chiral algebras).

5. Sheaf of perturbative observables

5.1 General considerations

In general, a local operator is an operator F that is a function of the physical fields φi,

φī, ψi
z̄, ψī, λa, λa

z , and their derivatives with respect to z and z̄.14,15 However, as we saw

in section 3.1, the Q+-cohomology vanishes for operators of dimension (n,m) with m 6= 0.

Since ψi
z̄ and the derivative ∂z̄ both have m = 1 (and recall from section 3.1 that a physical

operator cannot have negative m or n), Q+-cohomology classes can be constructed from

just φi, φī, ψī, λa, λa
z and their derivatives with respect to z. Note that the equation of

motion for ψī is Dzψ
ī = −F a

b
ī
j̄(φ)λaλ

b
zψ

j̄ . Thus, we can ignore the z-derivatives of ψī,

since it can be expressed in terms of the other fields and their corresponding derivatives.

Therefore, a chiral (i.e. Q+-invariant) operator which represents a Q+-cohomology class is

given by

F(φi, ∂zφ
i, ∂2

zφi, . . . ;φī, ∂zφ
ī, ∂2

zφī, . . . ;λa, ∂zλa, ∂
2
zλa . . . ;λa

z , ∂zλ
a
z , ∂

2
zλa

z . . . ;ψī), (5.1)

where we have tried to indicate that F might depend on z derivatives of φi, φī, λa and

λa
z of arbitrarily high order, though not on derivatives of ψī. If the scaling dimension of

14Notice that we have excluded the auxiliary fields la and lazz̄ as they do not contribute to the correlation

functions since their propagators are trivial.
15Note here that since we are interested in local operators which define a holomorphic chiral algebra on

the Riemann surface Σ, we will work locally on a flat Σ with local parameter z. Hence, we need not include

in our operators the dependence on the scalar curvature of Σ.
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F is bounded, it will mean that F depends only on the derivatives of fields up to some

finite order, is a polynomial of bounded degree in those, and/or is a bounded polynomial

in λa
z . Notice that F will always be a polynomial of finite degree in λa

z , λa and ψī, simply

because λa
z , λa and ψī are fermionic and can only have a finite number of components before

they vanish due to their anticommutativity. However, the dependence of F on φi, φī (as

opposed to their derivatives) need not have any simple form. Nevertheless, we can make

the following observation - from the U(1)L × U(1)R charges of the fields listed in section

2.2, we see that if F is homogeneous of degree k in ψī, then it has U(1)L × U(1)R-charge

(qL, qR) = (p, k), where p is determined by the net number of λa over λa
z fields (and/or of

their corresponding derivatives) in F .

A general qR = k operator F(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ;λa, ∂zλa, . . . ;λ
a
z , ∂zλ

a
z , . . . ;ψ

ī)

can be interpreted as a (0, k)-form on X with values in a certain tensor product bundle. In

order to illustrate the general idea behind this interpretation, we will make things explicit

for operators of dimension (0, 0) and (1, 0). Similiar arguments will likewise apply for

operators of higher dimension. For dimension (0, 0), the most general operator takes the

form F(φi, φī;λa;ψ
j̄) = f

a1,...,aq

j̄1,...,j̄k
(φi, φī)ψj̄i . . . ψj̄kλa1 . . . λaq ; thus, F may depend on φi, φī

and λa, but not on their derivatives, and is kth order in ψj̄ . Mapping ψj̄ to dφj̄ , such

an operator corresponds to an ordinary (0, k)-form fj̄1,...,j̄k
(φi, φī)dφj̄1 . . . dφj̄k on X with

values in the bundle ΛqE .16 For dimension (1, 0), there are four general cases. In the first

case, we have an operator F(φl, ∂zφ
i, φl̄;λa;ψ

j̄) = f
a1,...,aq

i,j̄1,...,j̄k
(φl, φl̄)∂zφ

iψj̄1 . . . ψj̄kλa1 . . . λaq

that is linear in ∂zφ
i and does not depend on any other derivatives. It is a (0, k)-form

on X with values in the tensor product bundle of T ∗X with ΛqE ; alternatively, it is a

(1, k)-form on X with values in the bundle ΛqE . Similarly, in the second case, we have an

operator F(φl, φl̄, ∂zφ
s̄;λa;ψ

j̄) = f
i;a1,...,aq

j̄1,...,j̄k
(φl, φl̄)gis̄∂zφ

s̄ψj̄i . . . ψj̄kλa1 . . . λaq that is linear

in ∂zφ
s̄ and does not depend on any other derivatives. It is a (0, k)-form on X with values

in the tensor product bundle of TX with ΛqE . In the third case, we have an operator

F(φl, φl̄;λa, ∂zλa;ψ
j̄) = f

a1,...,aq

b̄;j̄1,...,j̄k
(φl, φl̄)hb̄a∂zλaψ

j̄1 . . . ψj̄kλa1 . . . λaq that is linear in ∂zλa

and does not depend on any other derivatives. Such an operator corresponds to a (0, k)-

form on X with values in the (antisymmetric) tensor product bundle of E with ΛqE , where

the local holomorphic sections of the bundle E are spanned by ∂zλa. In the last case, we

have an operator F(φl, φl̄;λa, λ
a
z ;ψ

j̄) = f
a1,...,aq

a;j̄1,...,j̄k
(φl, φl̄)λa

zψ
j̄i . . . ψj̄kλa1 . . . λaq ; here, F may

depend on φi, φī, λa and λa
z , but not on their derivatives. Such an operator corresponds

to a (0, k)-form on X with values in the (antisymmetric) tensor product bundle of E∨ with

ΛqE . In a similiar fashion, for any integer n > 0, the operators of dimension (n, 0) and

charge qR = k can be interpreted as (0, k)-forms with values in a certain tensor product

bundle over X. This structure persists in quantum perturbation theory, but there may be

perturbative corrections to the complex structure of the bundle.

The action of Q+ on such operators can be easily described at the classical level.

If we interpret ψī as dφī, then Q+ acts on functions of φi and φī, and is simply the ∂̄

operator on X. This follows from the transformation laws δφī = ψī, δφi = 0, δψī = 0,

and (on-shell) δλa = δλa
z = 0. Note that if the holomorphic vector bundle E has vanishing

16Note that q ≤ rank(E) due to the anticommutativity of λa.
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curvature, the interpretation of Q+ as the ∂̄ operator will remain valid when Q+ acts on a

more general operator F(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ;λa, . . . ;λ
a
z , . . . ;ψ

ī) that does depend on

the derivatives of φi and φī. The reason for this is that if E is a trivial bundle with zero

curvature, we will have the equation of motion Dzψ
ī = 0. This means that one can neglect

the action of Q+ on derivatives ∂m
z φī with m > 0. On the other hand, if E is a non-trivial

holomorphic vector bundle, Q+ will only act as the ∂̄ operator on physical operators that

do not contain the derivatives ∂m
z φī with m > 0.

Perturbatively, there will be corrections to the action of Q+. In fact, as briefly men-

tioned in section 3.1 earlier, (3.6) provides such an example - the holomorphic stress tensor

Tzz, though not corrected at 1-loop, is no longer Q+-closed because the action of Q+ has

received perturbative corrections. Let us now attempt to better understand the nature of

such perturbative corrections. To this end, let Qcl denote the classical approximation to

Q+. The perturbative corrections in Q+ will then modify the classical expression Qcl. Note

that since sigma model perturbation theory is local on X, and it depends on an expansion

of fields such as the metric tensor of X in a Taylor series up to some given order, the

perturbative corrections to Qcl will also be local on X, where order by order, they consist

of differential operators whose possible degree grows with the order of perturbation theory.

Let us now perturb the classical expression Qcl so that Q+ = Qcl + ǫQ′ + O(ǫ2), where

ǫ is a parameter that controls the magnitude of the perturbative quantum corrections at

each order of the expansion. To ensure that we continue to have Q
2
+ = 0, we require that

{Qcl, Q
′} = 0. In addition, if Q′ = {Qcl,Λ} for some Λ, then via the conjugation of Q+ with

exp(−ǫΛ) (which results in a trivial change of basis in the space of Q+-closed local opera-

tors), the correction by Q′ can be removed. Hence, Q′ represents a Qcl-cohomology class.

Since Q′ is to be generated in sigma model perturbation theory, it must be constructed

locally from the fields appearing in the sigma model action.

It will be useful for later if we discuss the case when E is a trivial bundle now. In such

a case, Qcl will always act as the ∂̄ operator as argued above. In other words, perturbative

corrections to Q+ will come from representatives of ∂̄-cohomology classes on X. An example

would be the Ricci tensor in (3.6) which represents a ∂̄-cohomology class in H1(X,T ∗X).

It is also constructed locally from the metric of X, which appears in the action. Hence,

it satisfies the conditions required of a perturbative correction Q′. Another representative

of a ∂̄-cohomology class on X which may contribute as a perturbative correction to the

classical expression Q+ = Qcl, would be an element of H1(X,Ω2,cl
X ). It is also constructed

locally from fields appearing in the action Spert, and is used to deform the action. In fact,

its interpretation as a perturbative correction Q′ is consistent with its interpretation as the

moduli of the chiral algebra. To see this, notice that its interpretation as Q′ means that

it will parameterise a family of Q+ = Qcl + ǫQ′ operators at the quantum level. Since the

chiral algebra of local operators is defined to be closed with respect to the Q+ operator, it

will vary with the Q+ operator and consequently with H1(X,Ω2,cl
X ), i.e., one can associate

the moduli of the chiral algebra with H1(X,Ω2,cl
X ). Apparently, these classes are the only

one-dimensional ∂̄-cohomology classes on X that can be constructed locally from fields

appearing in the action, and it may be that they completely determine the perturbative
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corrections to Q+ = Qcl.
17 The observations in this paragraph will be important in section

5.4, when we discuss the Q+-cohomology of local operators (on a small open set U ⊂ X)

furnished by a sheaf of vertex superalgebras associated with a free bc-βγ system.

The fact that Q+ does not always act as the ∂̄ operator even at the classical level, seems

to suggest that one needs a more general framework than just ordinary Dolbeault or ∂̄-

cohomology to describe the Q+-cohomology of the twisted heterotic sigma model. Indeed,

as we will show shortly in section 5.3, the appropriate description of the Q+-cohomology

of local operators spanning the chiral algebra will be given in terms of the more abstract

notion of Cech cohomology.

5.2 A topological chiral ring

Next, let us make an interesting and relevant observation about the ground operators

in the Q+-cohomology. Note that we had already shown in section 3.1, that the Q+-

cohomology of operators has the structure of a chiral algebra with holomorphic operator

product expansions. Let the local operators of the Q+-cohomology be given by Fa, Fb,

. . . with scaling dimensions (ha, 0), (hb, 0), . . . . By holomorphy, and the conservation of

scaling dimensions and U(1)L × U(1)R charges, the OPE of these operators take the form

Fa(z)Fb(z
′) =

∑

qc=qa+qb

Cabc Fc(z
′)

(z − z′)ha+hb−hc
, (5.2)

where we have represented the U(1)L × U(1)R charges (qL, qR) of the operators Fa, Fb

and Fc by qa, qb and qc for brevity of notation. Here, Cabc is a structure constant that is

(anti)symmetric in the indices. If F̃a and F̃b are ground operators of dimension (0, 0), i.e.,

ha = hb = 0, the OPE will then be given by

F̃a(z)F̃b(z
′) =

∑

qc=qa+qb

Cabc Fc(z
′)

(z − z′)−hc
. (5.3)

Notice that the r.h.s. of (5.3) is only singular if hc < 0. Also recall that all physical

operators in the Q+-cohomology cannot have negative scaling dimension, i.e., hc ≥ 0.18

Hence, the r.h.s. of (5.3), given by (z − z′)hcFc(z
′), is non-singular as z → z′, since a pole

does not exist. Note that (z − z′)hcFc(z
′) must also be annihilated by Q+ and be in its

cohomology, since F̃a and F̃b are. In other words, we can write F̃c(z, z′) = (z− z′)hcFc(z
′),

17Since we are considering a holomorphic vector bundle E whose curvature two-form vanishes in this case,

the second term of ∆1−loop in (3.5) will be zero. Consequently, only the first term on the r.h.s. of (3.5)

remains. In other words, only Rij̄ will contribute to the correction of Qcl from ∆1−loop. Since an element

of H1(X, Ω2,cl

X ) is the only other ∂̄-cohomology class which can appear in the quantum action, it would

contribute as the only other perturbative correction to Qcl.
18As mentioned in the footnote 4, for an operator of classical dimension (n, m), anomalous dimensions

due to RG flow may shift the values of n and m in the quantum theory. However, the spin n − m remains

unchanged. Hence, since the operators in the Q+-cohomology of the quantum theory will continue to have

m = 0 (due to a Q+-trivial anti-holomorphic stress tensor Tz̄z̄ at the quantum level), the value of n is

unchanged as we go from the classical to the quantum theory, i.e., n ≥ 0 holds even at the quantum level.
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where F̃c(z, z′) is a dimension (0, 0) operator that represents a Q+-cohomology class. Thus,

we can express the OPE of the ground operators as

F̃a(z)F̃b(z
′) =

∑

qc=qa+qb

Cabc F̃c(z, z′). (5.4)

Since the only holomorphic functions without a pole on a Riemann surface are constants,

it will mean that the operators F̃ are independent of the coordinate ‘z’ on Σ. Hence, they

are completely independent of their insertion points and the metric on Σ. Therefore, we

conclude that the ground operators of the Q+-cohomology define a topological chiral ring

via their OPE

F̃aF̃b =
∑

qc=qa+qb

Cabc F̃c. (5.5)

In perturbation theory, the chiral ring will have a Z×Z grading by the U(1)L ×U(1)R
charges of the operators. However, since each charged, anti-commuting, fermionic field

cannot appear twice in the same operator, each operator will consist of only a finite number

of them. Consequently, the individual Z grading will be reduced mod 2 to Z2, such that the

ring is effectively Z2 × Z2 graded. Non-perturbatively, due to worldsheet instantons, the

continuous U(1)L × U(1)R symmetry is reduced to a discrete subgroup. In order for this

discrete symmetry to be non-anomalous, the values of the corresponding U(1)L × U(1)R
charges can only be fractional multiples of π. More precisely, from the relevant index

theorems, we find that the initial Z × Z grading by the U(1)L × U(1)R charges will be

reduced to Z2p × Z2k by worldsheet instantons, where 2p and 2k are the greatest divisors

of c1(E) and c1(TX) respectively.

At the classical level (i.e. in the absence of perturbative corrections), Q+ = Qcl will act

on a dimension (0, 0) operator (i.e., one that does not contain the derivatives ∂m
z φī with

m > 0) as the ∂̄ operator. Moreover, recall that any dimension (0, 0) operator F̃d with

(qL, qR) = (q, k), will correspond to an ordinary (0, k)-form fj̄1,...,j̄k
(φi, φī)dφj̄1 ∧ · · · ∧ dφj̄k

on X with values in the bundle ΛqE . Hence, via the Cech-Dolbeault isomorphism in

ordinary differential geometry, the classical ring is just the graded Cech cohomology ring

H∗(X,Λ∗E). In any case, the operators will either be non-Grassmannian or Grassmannian,

obeying either commutators or anti-commutators, depending on whether they contain an

even or odd number of fermionic fields.

5.3 A sheaf of chiral algebras

We shall now explain the idea of a “sheaf of chiral algebras” on X. To this end, note that

both the Q+-cohomology of local operators (i.e., operators that are local on the Riemann

surface Σ), and the fermionic symmetry generator Q+, can be described locally on X.

Hence, one is free to restrict the local operators to be well-defined not throughout X, but

only on a given open set U ⊂ X. Since in perturbation theory, we are considering trivial

maps Φ : Σ → X with no multiplicities, an operator defined in an open set U will have

a sensible operator product expansion with another operator defined in U . From here,

one can naturally proceed to restrict the definition of the operators to smaller open sets,

such that a global definition of the operators can be obtained by gluing together the open
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sets on their unions and intersections. From this description, in which one associates a

chiral algebra, its OPE’s, and chiral ring to every open set U ⊂ X, we get what is known

mathematically as a “sheaf of chiral algebras”. We shall call this sheaf Â.

Description of A via Cech cohomology. In perturbation theory, one can also describe

the Q+-cohomology classes by a form of Cech cohomology. This alternative description will

take us to the mathematical point of view on the subject [3, 1, 6]. In essence, we will show

that the chiral algebra A of the Q+-cohomology classses of the twisted heterotic sigma

model on a holomorphic vector bundle E over X, can be represented, in perturbation

theory, by the classes of the Cech cohomology of the sheaf Â of locally-defined chiral

operators. To this end, we shall generalise the argument in section 3.2 which provides a

Cech cohomological description of a ∂̄-cohomology, to demonstrate an isomorphism between

the Q+-cohomology classes and the classes of the Cech cohomology of Â.

Let us start by considering an open set U ⊂ X that is isomorphic to a contractible

space such as an open ball in Cn, where n = dimC(X). Because U is a contractible space,

any bundle over U will be trivial. By applying this statement on the holomorphic vector

bundle E over U , we find that the curvature of E vanishes. From the discussion in section

5.1, we find that Q+ will then act as the ∂̄ operator on any local operator F in U . In other

words, F can be interpreted as a ∂̄-closed (0, k)-form with values in a certain tensor product

bundle F̂ over U . Thus, in the absence of perturbative corrections at the classical level,

any operator F in the Q+-cohomology will be classes of H0,k
∂̄

(U, F̂ ) on U . As explained,

F̂ will also be a trivial bundle over U , which means that F̂ will always possess a global

section, i.e., it corresponds to a soft sheaf. Since the higher Cech cohomologies of a soft

sheaf are trivial [31], we will have Hk
Cech(U, F̂ ) = 0 for k > 0. Mapping this back to

Dolbeault cohomology via the Cech-Dolbeault isomorphism, we find that H0,k
∂̄

(U, F̂ ) = 0

for k > 0. Note that small quantum corrections in the perturbative limit can only annihilate

cohomology classes and not create them. Hence, in perturbation theory, it follows that the

local operators F with positive values of qR, must vanish in Q+-cohomology on U .

Now consider a good cover of X by open sets {Ua}. Since the intersection of open sets

{Ua} also give open sets (isomorphic to open balls in Cn), {Ua} and all of their intersections

have the same property as U described above: ∂̄-cohomology and hence Q+-cohomology

vanishes for positive values of qR on {Ua} and their intersections.

Let the operator F1 on X be a Q+-cohomology class with qR = 1. It is here that we

shall import the usual arguments relating a ∂̄ and Cech cohomology, to demonstrate an

isomorphism between the Q+-cohomology and a Cech cohomology. When restricted to an

open set Ua, the operator F1 must be trivial in Q+-cohomology, i.e., F1 = {Q+, Ca}, where

Ca is an operator of qR = 0 that is well-defined in Ua.

Now, since Q+-cohomology classes such as F1 can be globally-defined on X, we have

F1 = {Q+, Ca} = {Q+, Cb} over the intersection Ua ∩ Ub, so {Q+, Ca − Cb} = 0. Let

Cab = Ca −Cb. For each a and b, Cab is defined in Ua ∩Ub. Therefore, for all a, b, c, we have

Cab = −Cba, Cab + Cbc + Cca = 0. (5.6)
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Moreover, for (qR = 0) operators Ka and Kb, whereby {Q+,Ka} = {Q+,Kb} = 0, we have

an equivalence relation

Cab ∼ C′
ab = Cab + Ka −Kb. (5.7)

Note that the collection {Cab} are operators in the Q+-cohomology with well-defined oper-

ator product expansions, and whose dimension (0, 0) subset furnishes a topological chiral

ring with qR = 0.

Since the local operators with positive values of qR vanish in Q+-cohomology on an ar-

bitrary open set U , the sheaf Â of the chiral algebra of operators has for its local sections the

ψī-independent (i.e. qR = 0) operators F̂(φi, ∂zφ
i, . . . ; ∂zφ

ī, . . . ;λa, ∂zλa, . . . ;λ
a
z , ∂zλ

a
z , . . . )

that are annihilated by Q+. Each Cab with qR = 0 is thus a section of Â over the intersec-

tion Ua ∩ Ub. From (5.6) and (5.7), we find that the collection {Cab} defines the elements

of the first Cech cohomology group H1
Cech(X, Â).

Next, note that the Q+-cohomology classes are defined as those operators which are

Q+-closed, modulo those which can be globally written as {Q+, . . . } on X. In other words,

F1 vanishes in Q+-cohomology if we can write it as F1 = {Q+, Ca} = {Q+, Cb} = {Q+, C},

i.e., Ca = Cb and hence Cab = 0. Therefore, a vanishing Q+-cohomology with qR = 1

corresponds to a vanishing first Cech cohomology. Thus, we have obtained a map between

the Q+-cohomology with qR = 1 and a first Cech cohomology.

Similar to the case of relating a ∂̄ and Cech cohomology, one can also run everything

backwards and construct an inverse of this map. Suppose we are given a family {Cab} of

sections of Â over the corresponding intersections {Ua ∩Ub}, and they obey (5.6) and (5.7)

so that they define the elements of H1(X, Â). We can then proceed as follows. Let the

set {fa} be partition of unity subordinates to the open cover of X provided by {Ua}. This

means that the elements of {fa} are continuous functions on X, and they vanish outside the

corresponding elements in {Ua} whilst obeying
∑

a fa = 1. Let F1,a be a chiral operator

defined in Ua by F1,a =
∑

c[Q+, fc]Cac.
19 F1,a is well-defined throughout Ua, since in Ua,

[Q+, fc] vanishes wherever Cac is not defined. Clearly, F1,a has qR = 1, since Cac has qR = 0

and Q+ has qR = 1. Moreover, since F1,a is a chiral operator defined in Ua, it will mean

that {Q+,F1,a} = 0 over Ua. For any a and b, we have F1,a −F1,b =
∑

c[Q+, fc](Cac −Cbc).

Using (5.6), this is
∑

c[Q+, fc]Cab = [Q+,
∑

c fc]Cab. This vanishes since
∑

c fc = 1. Hence,

F1,a = F1,b on Ua ∩ Ub, for all a and b. In other words, we have found a globally-defined

qR = 1 operator F1 that obeys {Q+,F1} = 0 on X. Notice that F1,a and thus F1 is not

defined to be of the form {Q+, . . . }. Therefore, we have obtained a map from the Cech

cohomology group H1(X, Â) to the Q+-cohomology group with qR = 1, i.e., Q+-closed

qR = 1 operators modulo those that can be globally written as {Q+, . . . }. The fact that

this map is an inverse of the first map can indeed be verified.

Since there is nothing unique about the qR = 1 case, we can repeat the above procedure

for operators with qR > 1. In doing so, we find that the Q+-cohomology coincides with the

Cech cohomology of Â for all qR. Hence, the chiral algebra A of the twisted heterotic sigma

19Normal ordering of the operator product of [Q+, fc(φ
i, φī)] with Cac is needed for regularisation pur-

poses.
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model will be given by
⊕

qR
HqR

Cech(X, Â) as a vector space. As there will be no ambiguity,

we shall henceforth omit the label “Cech” when referring to the cohomology of Â.

Note that in the mathematical literature, the sheaf Â, also known as a sheaf of vertex

superalgebras, is studied purely from the Cech viewpoint; the field ψī is omitted and locally

on X, one considers operators constructed only from φi, φī, λa, λa
z and their z-derivatives.

The chiral algebra A of Q+-cohomology classes with positive qR are correspondingly con-

structed as Cech qR-cocycles. However, in the physical description via a Lagrangian and

Q+ operator, the sheaf Â and its cohomology are given a ∂̄-like description, where Cech

qR-cycles are represented by operators that are qth
R order in the field ψī. Notice that the

mathematical description does not involve any form of perturbation theory at all. Instead,

it utilises the abstraction of Cech cohomology to define the spectrum of operators in the

quantum sigma model. It is in this sense that the study of the sigma model is given a

rigorous foundation in the mathematical literature.

The constraint Λr
E ∼= KX. In a physical heterotic string compactification on a gauge

bundle E over a space X, the charged massless RR states are represented (in the pertur-

bative limit, ignoring worldsheet instantons) by classes in the Cech cohomology group [32]

Hq(X,ΛpE), (5.8)

and the corresponding vertex operators representing these states contain p left-moving

and q right-moving fermi fields. Notice that the classes of (5.8) can be represented by the

dimension (0,0) local operators of the Q+-cohomology in the twisted heterotic sigma model

with U(1)L ×U(1)R charge (p, q). It is here that the physical relevance of the sigma model

is readily manifest.

In the context of the physical heterotic string with (0, 2) worldsheet supersymmetry,

one can sometimes speak sensibly of a heterotic chiral ring. This ring is described additively

by the sum of Cech cohomology groups of the form in (5.8) above, i.e.,

H∗,∗
het =

∑

p,q

Hq(X,ΛpE). (5.9)

Note that Serre duality in (0, 2) theories require that states in H∗,∗
het be dual to other states

in H∗,∗
het [32]. Serre duality acts as

H i(X,ΛjE) ∼= Hn−i(X,ΛjE∨ ⊗ KX)∗

∼= Hn−i(X,Λr−jE ⊗ ΛrE∨ ⊗ KX)∗, (5.10)

where n = dimCX and r is the rank of E . KX is simply the canonical bundle of X (i.e.

the bundle over X whose holomorphic sections are (n, 0)-forms on X). Hence, from (5.10),

the states of H∗,∗
het only close back onto themselves under a duality relation if and only if

the line bundle ΛrE∨ ⊗ KX on X is trivial, i.e., ΛrE ∼= KX . Thus, if the twisted heterotic

sigma model is to be physically relevant such as to have a geometrical background that is

consistent with one that will be considered in the actual, physical heterotic string theory,

this constraint needs to be imposed. In fact, ΛrE ∼= KX implies c1(TX) = −c1(E). This

condition on the first Chern class of the bundles is simply the first anomaly cancellation

condition in (4.1) for a general worldsheet Σ.
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5.4 Relation to a free bc-βγ system

Now, we shall express in a physical language a few key points that are made in the math-

ematical literature [1, 6] starting from a Cech viewpoint. Let us start by providing a

convenient description of the local structure of the sheaf Â. To this end, we will describe

in a new way the Q+-cohomology of operators that are regular in a small open set U ⊂ X.

We assume that U is isomorphic to an open ball in Cn and is thus contractible.

Notice from Spert in (2.16) and V in (2.13), that the hermitian metric on X and the

fibre metric of E (implicit in the second term λal
a
zz̄ of V ), only appear inside a term of the

form {Q+, . . . } in the action. Thus, any shift in the metrics will also appear inside Q+-

exact (i.e. Q+-trivial) terms. Consequently, for our present purposes, we can arbitrarily

redefine the values of the hermitian metric on X and the fibre metric of E , since they do

not affect the analysis of the Q+-cohomology. Therefore, to describe the local structure,

we can pick a hermitian metric that is flat when restricted to U . Similarly, we can pick

a fibre metric of E that is flat over U as well. In fact, this latter choice is automatically

satisfied in U - the bundle E over a contractible space U is trivial. The action, in general,

also contains terms derived from an element of H1(X,Ω2,cl
X ), as we explained in section

3.2. From (3.8), we see that these terms are also Q+-exact locally, and therefore can be

discarded in analysing the local structure in U . Thus, the local action (derived from the

flat fibre and hermitian metric) of the twisted heterotic sigma model on Ef ×U (where Ef

denotes the fibre space of E) is

I =
1

2π

∫

Σ
|d2z|

∑

i,j̄

δij̄

(
∂zφ

j̄∂z̄φ
i + ψi

z̄∂zψ
j̄
)

+
∑

a,b̄

δab̄λ
b̄∂z̄λ

a
z , (5.11)

where λb̄ is a scalar on Σ with values in the pull-back bundle Φ∗(E), such that for an

arbitrary fibre metric hab̄, we have λa = hab̄λ
b̄.

Now let us describe the Q+-cohomology classes of operators regular in U . As explained

earlier, these are operators of dimension (n, 0) that are independent of ψī. In general, such

operators are of the form F̂(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ;λa, ∂zλa, . . . ;λ
a
z , ∂zλ

a
z , . . . ). Note that

since E has vanishing curvature over U , from the discussion in section 5.1, we see that Q+

will act as the ∂̄ operator at the classical level. In this case, the Q+ operator can receive

perturbative corrections from ∂̄-cohomology classes such as the Ricci tensor and classes

in H1(X,Ω2,cl
X ). However, note that since we have picked a flat hermitian metric on U ,

the corresponding Ricci tensor on U is zero. Moreover, as explained above, classes from

H1(X,Ω2,cl
X ) do not contribute when analysing the Q+-cohomology on U . Hence, we can ig-

nore the perturbative corrections to Q+ for our present purposes. Therefore, on the classes

of operators in U , Q+ acts as ∂̄ = ψī∂/∂φī, and the condition that F̂ is annihilated by Q+

is precisely that, as a function of φi, φī, λa, λa
z and their z-derivatives, it is independent of

φī (as opposed to its derivatives), and depends only on the other variables, namely φi, λa,

λa
z and the derivatives of φi, φī, λa and λa

z .
20 Hence, the Q+-invariant operators are of the

form F̂(φi, ∂zφ
i, . . . ; ∂zφ

ī, ∂2
zφī, . . . ;λa, ∂zλa, ∂

2
zλa, . . . ;λ

a
z , ∂zλ

a
z , ∂

2
zλa

z , . . . ). In other words,

20We can again ignore the action of Q+ on z-derivatives of φī because of the equation of motion ∂zψ
ī = 0

and the symmetry transformation law δφī = ψī.
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the operators, in their dependence on the center of mass coordinate of the string whose

worldsheet theory is the twisted heterotic sigma model, is holomorphic. The local sections

of Â are just given by the operators in the Q+-cohomology of the local, twisted heterotic

sigma model with action (5.11).

Let us set βi = δij̄∂zφ
j̄ and γi = φi, whereby βi and γi are bosonic operators of

dimension (1, 0) and (0, 0) respectively. Next, let us set δab̄λ
b̄ = ca and λa

z = ba, whereby

ba and ca are fermionic operators of dimension (1, 0) and (0, 0) accordingly. Then, the Q+-

cohomology of operators regular in U can be represented by arbitrary local functions of

β, γ, b and c, of the form F̂(γ, ∂zγ, ∂2
zγ, . . . , β, ∂zβ, ∂2

zβ, . . . , c, ∂zc, ∂
2
z c, . . . , b, ∂zb, ∂

2
z b, . . . ).

The operators β and γ have the operator products of a standard βγ system. The products

β · β and γ · γ are non-singular, while

βi(z)γj(z′) = −
δj
i

z − z′
+ regular. (5.12)

Similarly, the operators b and c have the operator products of a standard bc system.

The products b · b and c · c are non-singular, while

ba(z)cb(z
′) =

δa
b

z − z′
+ regular. (5.13)

These statements can be deduced from the flat action (5.11) by standard field theory

methods. We can write down an action for the fields β, γ, b and c, regarded as free

elementary fields, which reproduces these OPE’s. It is simply the following action of a

bc-βγ system:

Ibc-βγ =
1

2π

∫

Σ
|d2z|

(
∑

i

βi∂z̄γ
i +

∑

a

ba∂z̄ca

)
. (5.14)

Hence, we find that the local bc-βγ system above reproduces the Q+-cohomology of ψī-

independent operators of the sigma model on U and their appropriate OPE’s, i.e., the local

sections of the sheaf Â.

At this juncture, one can make another important observation concerning the rela-

tionship between the local twisted heterotic sigma model with action (5.11) and the local

version of the bc-βγ system of (5.14). To begin with, note that the holomorphic stress

tensor T̂ (z) = −2πTzz of the local, free field sigma model is given by

T̂ (z) = −δij̄∂zφ
j̄∂zφ

i − λa
z∂zλa (5.15)

(Here and below, normal ordering is understood for T̂ (z)). Via the respective identification

of the fields β and γ with ∂zφ and φ, λa and λa
z with ca and ba, we find that T̂ (z) can be

written in terms of the b and c fields as

T̂ (z) = −βi∂zγ
i − ba∂zca. (5.16)

T̂ (z), as given by (5.16), coincides with the holomorphic stress tensor of the local bc-βγ

system. Simply put, the twisted heterotic sigma model and the bc-βγ system have the

same local holomorphic stress tensor. This means that locally on X (and hence E → X),
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the sigma model and the bc-βγ system have the same generators of general holomorphic

coordinate transformations on the worldsheet.

One may now ask the following question: does the bc-βγ system reproduce the Q+-

cohomology of ψī-independent operators and their respective OPE’s globally on X, or only

in a small open set U? Well, the bc-βγ system will certainly reproduce the Q+-cohomology

of ψī-independent operators and their OPE’s globally on X if there is no obstruction

to defining the system globally on X, i.e., one finds, after making global sense of the

action (5.14), that the corresponding theory remains anomaly-free. Let’s look at this more

closely.

First and foremost, the classical action (5.14) makes sense globally if we interpret the

bosonic fields β, γ, and the fermionic fields b, c, correctly. γ defines a map γ : Σ → X,

and β is a (1, 0)-form on Σ with values in the pull-back γ∗(T ∗X). The field c is a scalar on

Σ with values in the pull-back γ∗(E∨), while the field b is a (1, 0)-form on Σ with values

in the pull-back γ∗(E). With this interpretation, (5.14) becomes the action of what one

might call a non-linear bc-βγ system. However, by choosing γi to be local coordinates on a

small open set U ⊂ X, and ca to be local sections of the pull-back γ∗(E∨) over U , one can

make the action linear. In other words, a local version of (5.14) represents the action of a

linear bc-βγ system. To the best of the author’s knowledge, the non-linear bc-βγ system

with action (5.14) does not seem to have been studied anywhere in the physics literature.

Nevertheless, the results derived in this paper will definitely serve to provide additional

insights into future problems involving the application of this non-linear bc-βγ system.

Now that we have made global sense of the action of the bc-βγ system at the clas-

sical level, let us move on to discuss what happens at the quantum level. The anoma-

lies that enter in the twisted heterotic sigma model also appear in the non-linear bc-βγ

system. Expand around a classical solution of the non-linear bc-βγ system, represented

by a holomorphic map γ0 : Σ → X, and a section c0 of the pull-back γ∗
0(E∨). Setting

γ = γ0 + γ′, and c = c0 + c′, the action, expanded to quadratic order about this solution, is

(1/2π)
[
(β,Dγ′) + (b,Dc′)

]
. γ′, being a deformation of the coordinate γ0 on X, is a section

of the pull-back γ∗
0(TX). Thus, the kinetic operator of the β and γ fields is the D operator

on sections of γ∗
0(TX); it is the complex conjugate of the D operator whose anomalies

we encountered in section 4. Complex conjugation reverses the sign of the anomalies, but

here the fields are bosonic, while in section 4, they were fermionic; this gives a second sign

change. (Notice that the D operator in section 4 acts on sections of the pull-back of the

anti-holomorphic bundle TX instead of the holomorphic bundle TX. However, this dif-

ference is irrelevant with regard to anomalies since ch2(E) = ch2(E) for any holomorphic

vector bundle E.) Next, since c′ is a deformation of c0, it will be a section of the pull-back

γ∗
0(E∨). The kinetic operator of the b and c fields is therefore the D operator on sections of

γ∗
0(E∨). Now, introduce a spin structure on Σ, so that we can equivalently interpret D as

the complex conjugate of the Dirac operator acting on sections K−1/2 ⊗ γ∗
0(E∨). Using the

same argument found in section 4, we find that by tensoring K−1/2 with γ∗
0(E∨), one will

get an additional term 1
2c1(Σ)c1(E

∨). However, since E is a complex vector bundle, we will

have E∨ = E , and because c1(E) = −c1(E), the additional term can actually be written as

−1
2c1(Σ)c1(E). Moreover, we also have ch2(E

∨) = ch2(E) = ch2(E). Thus, the anomalies
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due to the kinetic operator of the b and c fields, are the same as those due to the D operator

of section 4. Hence, the non-linear bc-βγ system has exactly the same anomalies as the

underlying twisted heterotic sigma model. And if the anomalies vanish, the bc-βγ system

will reproduce the Q+-cohomology of ψī-independent operators and their OPE’s globally

on X, i.e., one can find a global section of Â.

Via the identification of the various fields mentioned above, the left-moving fields ba

and ca will have U(1)L charges qL = −1 and qL = 1 respectively. Notice that this U(1)L
symmetry is nothing but the usual U(1) R ghost number symmetry of the action (5.14)

with the correct charges. However, note that the bc-βγ system lacks the presence of right-

moving fermions and thus the U(1)R charge qR carried by the fields ψi
z̄ and ψī of the

underlying twisted heterotic sigma model. Locally, the Q+-cohomology of the sigma model

is non-vanishing only for qR = 0. Globally however, there can generically be cohomology in

higher degrees. Since the chiral algebra of operators furnished by the linear bc-βγ system

gives the correct description of the Q+-cohomology of ψī-independent operators on U , one

can then expect the globally-defined chiral algebra of operators furnished by the non-linear

bc-βγ system to correctly describe the Q+-cohomology classes of zero degree (i.e. qR = 0) on

X. How then can one use the non-linear bc-βγ system to describe the higher cohomology?

The answer lies in the analysis carried out in section 5.3. In the bc-βγ description, we

do not have a close analog of ∂̄ cohomology at our convenience. Nevertheless, we can use

the more abstract notion of Cech cohomology. As before, we begin with a good cover of

X by small open sets {Ua}, and, as explained in section 5.3, we can then describe the

Q+-cohomology classes of positive degree (i.e. qR > 0) by Cech qR-cocycles, i.e., they can

be described by the qth
R Cech cohomology of the sheaf Â of the chiral algebra of the linear

bc-βγ system with action being a linearised version of (5.14). Although unusual from a

physicist’s perspective, this Cech cohomology approach has been taken as a starting point

for the present subject in the mathematical literature [1, 3, 4, 6]. Other more algebraic

approaches to the subject have also been taken in [7].

Another issue that remains to be elucidated is the appearance of the respective moduli

of the sigma model in the non-linear bc-βγ system. Recall from section 3.2 that the moduli

of the chiral algebra of the sigma model consists of the complex and holomorphic structure

of X and E respectively, as well as a class in H1(X,Ω2,cl
X ). The complex and holomor-

phic structures are built into the the classical action (5.14) via the definition of the fields

themselves. However, one cannot incorporate a class from H1(X,Ω2,cl
X ) within the action

in this framework. Nevertheless, as we will explain in section 5.6, the modulus represented

by a class in H1(X,Ω2,cl
X ) can be built into the definition of specific Cech cocycles through

which one can define a family of sheaves of chiral algebras. This approach has also been

taken in the mathematical literature [1, 6].

A final remark to be made is that in the study of quantum field theory, one would

like to be able to do more than just define the Q+-cohomology classes or a sheaf of chiral

algebras. One would also like to be able to compute physically meaningful quantities such as

the correlation functions of these cohomology classes of local operators. In the sigma model,

the correlation functions can be computed from standard methods in quantum field theory.

But at first sight, there seems to be an obstacle in doing likewise for the non-linear bc-βγ
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system. This can be seen as follows. Let the correlation function of s local operators O1,

O2, . . . , Os on a genus g Riemann surface Σ be given by 〈O1(z1) . . .Os(zs)〉g, where Oi(zi)

has U(1)R charge qR = qi. Note that the U(1)R anomaly computation of (2.8) in section 2.2

means that for the correlation functions of our model to be non-vanishing, they must satisfy∑
i qi = n(1 − g) in perturbation theory (in the absence of worldsheet instantons). Thus,

generic non-zero correlation functions require that not all the qi’s be zero. In particular,

correlation functions at string tree level vanish unless
∑

i qi = n, where n = dimCX.

However, the operators of qi 6= 0 cannot be represented in a standard way in the non-linear

bc-βγ system. They are instead described by Cech qi-cocycles. This means that in order for

one to compute the corresponding correlation functions using the non-linear bc-βγ system,

one must translate the usual quantum field theory recipe employed in the sigma model into

a Cech language. The computation in the Cech language will involve cup products of Cech

cohomology groups and their maps into complex numbers. An illuminating example would

be to consider a computation of the correlation function of dimension (0, 0) operators

on the sphere. To this end, first recall from section 5.1 that a generic dimension (0, 0)

operator Oi with U(1)L × U(1)R charge (pi, qi) can be interpreted as a (0, qi)-form with

values in the bundle ΛpiE . Thus, from section 5.3, we find that it represents a class

in the Cech cohomology group Hqi(X,ΛpiE). Secondly, note that the additional U(1)L
anomaly computation of (2.7) means that for the correlation functions of our model to

be non-vanishing on the sphere, they must also satisfy
∑

i pi = r in perturbation theory.

Thirdly, via the fixed-point theorem [33] and the BRST transformation laws in (2.11), we

find that the path integral reduces to an integral over the moduli space of holomorphic

maps. Since we are considering degree-zero maps in perturbation theory, the moduli space

of holomorphic maps is X itself, i.e., the path integral reduces to an integral over the

target space X. In summary, we find that a non-vanishing perturbative correlation function

involving s dimension (0, 0) operators O1, O2, . . . , Os on the sphere, can be computed as

〈O1(z1) . . .Os(zs)〉0 =

∫

X
W n,n, (5.17)

where W n,n is a top-degree form on X which represents a class in the Cech cohomology

group Hn(X,KX ). This (n, n)-form is obtained via the sequence of maps

Hq1(X,Λp1E) ⊗ · · · ⊗ Hqs(X,ΛpsE) → Hn(X,⊗s
i=1Λ

piE) → Hn(X,ΛrE) ∼= Hn(X,KX ),

(5.18)

where
∑s

i=1 qi = n and
∑s

i=1 pi = r. The first map is given by the cup product of Cech

cohomology classes which represent the corresponding dimension (0, 0) operators. The

second map is given by a wedge product of holomorphic bundles. The last isomorphism

follows from the required constraint ΛrE ∼= KX . Therefore, (5.17) just defines a map

Hn(X,KX ) → C. Although this procedure is unusual for a physicist, it has been utilised

in [16] as a powerful means to compute certain quantum (i.e. non-perturbative) correlation

functions in heterotic string theory. Analogous procedures follow for the computation of

correlation functions involving higher dimension operators.

Note that in the computation of a non-perturbative correlation function of the above

dimension (0, 0) operators, the operators will be represented by Cech cohomology classes
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in the moduli space of worldsheet instantons (See [16]). An extension of this recipe to

compute the non-perturbative correlation functions of local operators of higher dimension,

will therefore serve as the basis of a chiral version of (0, 2) quantum cohomology.

5.5 Local symmetries

So far, we have obtained an understanding of the local structure of the Q+-cohomology.

We shall now proceed towards our real objective of obtaining an understanding of its global

structure. In order to do, we will need to glue the local descriptions that we have studied

above together.

To our end, let us first note that the bc-βγ action given by (5.14) can also be written

as

Ibc-βγ =
1

2π

∫

Σ
|d2z|

(
∑

i

βi∂z̄γ
i +

∑

m

bm∂z̄c
m

)
, (5.19)

where bm is a (1, 0)-form on Σ with values in γ∗(Ẽ∨) and Ẽ = E∨, while cm is a scalar on

Σ with values in γ∗(Ẽ). Notice that the action of (5.19) just represents a conventional21

bc-βγ system on the bundle Ẽ → X. In other words, locally on X, the underlying twisted

heterotic sigma model on the bundle E → X is equivalent to the above bc-βγ system on

the bundle Ẽ → X, where Ẽ is just the dual bundle of E . We shall refer to this equivalent

bc-βγ system henceforth in all our discussions.

Next, let us cover X by small open sets {Ua}. Recall here that in each Ua, the Q+-

cohomology is described by the chiral algebra of local operators of the above free bc-βγ

system on Ẽf × Ua (with action a linearised version of (5.19)). Next, we will need to glue

these local descriptions together over the intersections {Ua∩Ub}, so as to describe the global

structure of the Q+-cohomology in terms of a globally-defined sheaf of chiral algebras over

the entire manifold X.

Note that the gluing has to be carried out using the automorphisms of the free bc-βγ

system. Thus, one must first ascertain the underlying symmetries of the system, which

are in turn divided into geometrical and non-geometrical symmetries. The geometrical

symmetries are used in gluing together the local sets {Ẽf ×Ua} into the entire holomorphic

bundle Ẽ → X. The non-geometrical symmetries on the other hand, are used in gluing the

local descriptions at the algebraic level.

As usual, the generators of these symmetries will be given by the charges of the con-

served currents of the free bc-βγ system. In turn, these generators will furnish the Lie

algebra g of the symmetry group. Let the elements of g which generate the non-geometrical

and geometrical symmetries be written as c and h = (v, f) respectively, where v generates

the geometrical symmetries of U , while f generates the fibre space symmetries of the bundle

Ẽ → U . Since the conserved charges must also be conformally-invariant, it will mean that

an element of g must be given by an integral of a dimension one current, modulo total

derivatives. In addition, the currents must also be invariant under the U(1) R-symmetry of

the action (5.14), under which the b and c fields have charges −1 and 1 respectively. With

21Conventional in the sense that as commonly defined in the physics and math literature, the b and c

fields have lower and upper target-space indices respectively.
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these considerations in mind, the dimension one currents of the free bc-βγ system can be

constructed as follows.

Let us start by describing the currents which are associated with the geometrical

symmetries first. Firstly, if we have a holomorphic vector field V on X where V = V i(γ) ∂
∂γi ,

we can construct a U(1) R-invariant

dimension one current JV = −V iβi. The corresponding conserved charge is then given

by KV =
∮

JV dz. A computation of the operator product expansion with the elementary

fields γ gives

JV (z)γk(z′) ∼
V k(z′)

z − z′
. (5.20)

Under the symmetry transformation generated by KV , we have δγk = iǫ[KV , γk], where ǫ

is a infinitesinal transformation parameter. Thus, we see from (5.20) that KV generates

the infinitesimal diffeomorphism δγk = iǫV k of U . In other words, KV generates the

holomorphic diffeomorphisms of the target space X. Therefore, KV spans the v subset of

g. For finite diffeomorphisms, we will have a coordinate transformation γ̃k = gk(γ), where

each gk(γ) is a holomorphic function in the γks. Since we are using the symmetries of the

bc-βγ system to glue the local descriptions over the intersections {Ua∩Ub}, on an arbitrary

intersection Ua ∩ Ub, γk and γ̃k must be defined in Ua and Ub respectively.

Next, let [t(γ)] be an arbitrary r×r matrix over X whose components are holomorphic

functions in γ. One can then construct a U(1) R-invariant dimension one current involving

the fermionic fields b and c as JF = cm[t(γ)]m
nbn, where the indices m and n on the matrix

[t(γ)] denote its (m,n) component, and m,n = 1, 2, . . . , r. The corresponding conserved

charge is thus given by KF =
∮

JF dz. A computation of the operator product expansion

with the elementary fields c gives

JF (z)cn(z′) ∼
cm(z′)tm

n

z − z′
, (5.21)

while a computation of the operator product expansion with the elementary fields b gives

JF (z)bn(z′) ∼ −
tn

mbm(z′)

z − z′
. (5.22)

Under the symmetry transformation generated by KF , we have δcn = iǫ[KF , cn] and

δbn = iǫ[KF , bn]. Hence, we see from (5.21) and (5.22) that KF generates the infinitesimal

transformations δcn = iǫcmtm
n and δbn = −iǫtn

mbm. For finite transformations, we will

have c̃n = cmAm
n and b̃n = (A−1)n

mbm, where A is an r × r matrix holomorphic in γ and

given by [A(γ)] = eiα[t(γ)], where α is a finite transformation parameter. As before, since

we are using the symmetries of the bc-βγ system to glue the local descriptions over the

intersections {Ua ∩ Ub}, on an arbitrary intersection Ua ∩ Ub, (cn, bn) and (c̃n, b̃n) must be

defined in Ua and Ub respectively. Recall at this point that the cn’s transform as holomor-

phic sections of the pull-back γ∗(Ẽ), while the bn’s transform as holomorphic sections of

the pull-back γ∗(Ẽ∨). Moreover, note that the transition function matrix of a dual bundle

is simply the inverse of the transition function matrix of the original bundle. This means

that we can consistently identify [A(γ)] as the holomorphic transition matrix of the gauge
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bundle Ẽ , and that KF spans the f subset of g. It is thus clear from the discussion so far

how one can use the geometrical symmetries generated by KV and KF to glue the local sets

{Ẽf × Ua} together on intersections of small open sets to form the entire bundle Ẽ → X.

Note however, that h = v ⊕ f is not a Lie subalgebra of g, but only a linear subspace.

This is because h does not close upon itself as a Lie algebra. This leads to non-trivial

consequences for g. In fact, this property of h is related to the physical anomalies of the

underlying sigma model. We will explain this as we go along. For the convenience of

our later discussion, let us denote the current and charge associated with the geometrical

symmetries by JH = JV + JF and KH = KV + KF respectively.

Before we proceed any further, note that one can also interpret the results of the last

paragraph in terms of a spacetime gauge symmetry as follows. Recall that the fermionic

fields cn (bn) are identified with the matter fields λa (λa
z) of the underlying twisted heterotic

sigma model, thus leading to their interpretation as sections of the pull-back γ∗(Ẽ) (γ∗(Ẽ∨)).

This in turn allows us to interpret the relation c̃n = cmAm
n as a local gauge transforma-

tion, where [A(γ)] is the holomorphic gauge transformation matrix in the r-dimensional

representation of the corresponding gauge group (associated with the gauge bundle Ẽ).

One should then be able to find a basis of matrices such that [t(γ)] =
∑dims

r=1 θr(γ)tr, where

s is the Lie algebra of the corresponding spacetime gauge group linearly realised by the

r left-moving fermi fields λa of the sigma model, θr(γ) is a spacetime-dependent gauge

transformation parameter, and the tr’s are the constant generator matrices of the Lie al-

gebra s. [A(γ)] will then take the correct form of a gauge transformation matrix, i.e.,

[A(γ)] = eiθr(γ)tr .

We shall now determine the current associated with the non-geometrical symmetries.

Let B =
∑

i Bi(γ)dγi be a holomorphic (1, 0)-form on X. We can then construct a U(1)

R-invariant dimension one current JB = Bi∂zγ
i. The conserved charge is then given by∮

JBdz. Let’s assume that B is an exact form on X, so that B = ∂H = ∂iHdγi, where H is

some local function on X that is holomorphic in γ. This in turn means that Bi = ∂iH. In

such a case,
∮

JBdz =
∮

∂iH∂zγ
idz. From the action (5.14), we have the equation of motion

∂z̄γ
i = 0. Hence,

∮
JBdz =

∮
∂iHdγi =

∮
dH = 0 by Stoke’s theorem. In other words,

the conserved charge constructed from B vanishes if B is exact and vice-versa. Let us now

ascertain the conditions under which B will be exact. To this end, note that it suffices

to work locally on X, since non-local instanton effects do not contribute in perturbation

theory. Via Poincare’s lemma, B is locally exact if and only if B is a closed form on X, i.e.,

∂B = ∂iBj −∂jBi = 0. Thus, for every non-vanishing holomorphic (2, 0)-form C = ∂B, we

will have a non-vanishing conserved charge KC =
∮

JBdz. Notice that C is annihilated by

∂ since ∂2 = 0, i.e., C must be a local holomorphic section of the sheaf Ω2,cl. Notice also

that the current JB is constructed from γ and its derivatives only. Consequently, the γi,

bn and cn fields are invariant under the symmetry transformations generated by KC . This

means that KC generates non-geometrical symmetries only. Hence, KC spans the c subset

of g.

Local field transformations. Let us now describe how the different fields of the free

bc-βγ system on Ẽf ×U transform under the geometrical and non-geometrical symmetries
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generated by KH = KV + KF and KC of g respectively. Firstly, note that the symmetries

generated by KF and KC act trivially on the γ fields, i.e., the γ fields have non-singular

OPE’s with JF and JB . Secondly, note that the symmetries generated by KV and KC act

trivially on both the b and c fields, i.e., the b and c fields have non-singular OPE’s with

JV and JB . As for the β fields, they transform non-trivially under all the symmetries, i.e.,

the OPE’s of the β fields with JV , JF and JC all contain simple poles. In summary, via a

computation of the relevant OPE’s, we find that the fields transform under the symmetries

of the free bc-βγ system on Ẽf × U as follows:

γ̃i = gi(γ), (5.23)

β̃i = βkD
k
i + bmcnAn

lDk
i(∂kA

−1)l
m + ∂zγ

jEij , (5.24)

c̃n = cmAm
n, (5.25)

b̃n = (A−1)n
mbm, (5.26)

where i, j, k = 1, 2, . . . , N = dimCX , and l,m, n = 1, 2, . . . , r. Here, D and E are N × N

matrices such that [D]T = [∂g]−1 and [E] = [∂B], that is, [(DT )−1]i
k = ∂ig

k and [E]ij =

∂iBj. It can be verified that β̃, γ̃, b̃ and c̃ obey the correct OPE’s amongst themselves.

We thus conclude that the fields must undergo the above transformations (5.23)–(5.26)

when we glue a local description (in a small open set) to another local description (in

another small open set) on the mutual intersection of open sets using the automorphism

of the free bc-βγ system. Note that the last term in β̃ is due to the non-geometrical

symmetry transformation generated by KC , while the first and second term in β̃ is due

to the geometrical symmetry transformation generated by KV and KF respectively. This

observation will be important when we discuss what happens at the (2, 2) locus later.

Another important comment to be made is that in computing (5.23)- (5.26), we have

just rederived, from a purely physical perspective, the set of field transformations (7.2a)-

(7.2d) in [1], which defines the valid automorphisms of the sheaf of vertex superalgebras

obtained from a mathematical model that is equivalent to a free bc-βγ system with ac-

tion (5.19)! Hence, since the actions given by (5.19) and (5.14) are equivalent, we learn

that the sheaf Â is mathematically known as a sheaf of vertex superalgebras spanned by

chiral differential operators on the exterior algebra ΛẼ = ⊕
rk(eE)
i=1 ΛiẼ of the holomorphic

vector bundle Ẽ over X [1, 6].

A non-trivial extension of Lie algebras and groups. We shall now study the prop-

erties of the symmetry algebra g of the free bc-βγ system on Ẽf × U . From the analysis

thus far, we find that we can write g = c + h as a linear space, where h = v + f. Note

that c is a trivial abelian subalgebra of g. This because the commutator of KC with itself

vanishes - the OPE of JB with itself is non-singular since the current is constructed from

γ and its derivatives only. Hence, g can be expressed in an extension of Lie algebras as

follows:

0 → c → g → h → 0. (5.27)

In fact, (5.27) is an exact sequence of Lie algebras as we will show shortly that [h, c] ⊂ c.

This means that c is ‘forgotten’ when we project g onto h.
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The action of h on c can be found from the JH(z)JC (z′) OPE

[
−V iβi(z) + cmtm

nbn(z)
]
· Bj∂z′γ

j(z′) ∼
1

z − z′
[
V i(∂iBk − ∂kBi) + ∂k(V

iBi)
]
∂z′γ

k

+
1

(z − z′)2
V iBi(z

′). (5.28)

The commutator of KH with KC , and thus [h, c], is simply the residue of the simple

pole on the r.h.s. of (5.28). The numerator of the first term on the r.h.s. of (5.28), given by

V i(∂iBk − ∂kBi) + ∂k(V
iBi), is the same as (LV (B))k, the kth component of the one-form

that results from the action of a Lie derivative of the vector field V on the one-form B. This

observation should not come as a surprise since the charges of JV generate diffeomorphisms

of U , and only the JV ·JC part of the OPE in (5.28) is non-trivial (since JF has non-singular

OPE’s with JC). Hence, [h, c] ⊂ c as claimed.

Let us now compute the commutator of two elements of h. To this end, let V and

W be two vector fields on U that are holomorphic in γ. Let t(γ) and t̃(γ) be r × r

matrices holomorphic in γ. Let V and W be associated with the currents JV (z) ⊂ JH(z)

and JW (z′) ⊂ JH(z′) respectively. Likewise, let t and t̃ be associated with the currents

JF (z) ⊂ JH(z) and J eF
(z′) ⊂ JH(z′) respectively. The JH(z)JH (z′) OPE is then computed

to be

JH(z)JH(z′) ∼ −
(V i∂iW

j − W i∂iV
j)βj

z − z′
−

(∂k∂jV
i)(∂iW

j∂z′γ
k)

z − z′
+

cm{t, t̃}m
cbc

z − z′

+
Tr[t̃∂it]∂z′γ

i

z − z′
−

∂jV
i∂iW

j(z′)

(z − z′)2
+

Tr[t̃t](z′)

(z − z′)2
. (5.29)

The last two terms on the r.h.s. of (5.29), being double poles, do not contribute to the

commutator. From the mathematical relation [V,W ]j = (LV (W ))j = V i∂iW
k − W i∂iV

j ,

we see that the first term takes values in v ⊂ h, the second term takes values in c, the third

term takes values in f ⊂ h, and the fourth term takes values in c. The first and third terms

which come from a single contraction of elementary fields in evaluating the OPE, arise

from the expected results JV (z)JW (z′) ∼ J[V,W ]/(z − z′) and JF (z)J eF
(z′) ∼ J{t,t̃}/(z − z′)

respectively. We would have obtained the same results by computing the commutator of

JV and JW , and that of JF and J eF , via Poisson brackets in the classical bc-βγ theory. The

second and fourth terms are the reason why [h, h] * h. Note that these two terms result

from multiple contractions of elementary fields, just like the anomalies of conformal field

theory. Hence, since h does not closed upon itself as a Lie algebra, g is not a semi-direct

product of h and c. Consequently, the extension of Lie algebras in (5.27) is non-trivial. Is

the non-triviality of the extension of Lie algebras of the symmetries of the bc-βγ system

on Ẽf × U then related to the physical anomalies of the underlying sigma model? Let us

study this further.

The exact sequence of Lie algebras in (5.27) will result in the following group extension

when we exponentiate the elements of g:

1 → C̃ → G̃ → H̃ → 1. (5.30)
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Here, G̃ is the symmetry group of all admissible automorphisms of the bc-βγ system, C̃ is

the symmetry group of the non-geometrical automorphisms, and H̃ is the symmetry group

of the geometrical automorphisms. Just as in (5.27), (5.30) is an exact sequence of groups,

i.e., the kernel of the map G̃ → H̃ is given by C̃. This means that the non-geometrical

symmetries are ‘forgotten’ when we project the full symmetries onto the geometrical sym-

metries. Since (5.30) is derived from a non-trivial extension of Lie algebras in (5.27), it

will be a non-trivial group extension. In fact, the cohomology class of the group extension

that captures its non-triviality is given by [1]

c2
1 − 2c2 − (c′1

2
− 2c′2) ∈ H2(H̃,Ω2,cl

eH
), (5.31)

where Ω2,cl
eH

is a sheaf of an H̃-module of closed two-forms, and ci, c
′
i ∈ H i(H̃,Ω2,cl

eH
) are

the universal Chern classes . The cohomology class H2(H̃,Ω2,cl
eH

) vanishes if and only if

the kernel of the map G̃ → H̃ is empty, i.e., G̃ = H̃. Thus, the group extension is trivial

if the admissible automorphisms of the bc-βγ system are solely of a geometrical kind.

This observation will be essential to our discussion of the sigma model at the (2, 2) locus

later. Let us return back to the issue of (5.31)’s relevance to the physical anomalies of

the underlying sigma model. Note that the mathematical arguments in [1] and a detailed

computation in [6], show that (5.30), together with its cohomology class (5.31), imply

that the obstruction to a globally-defined sheaf of chiral algebras Â of chiral differential

operators on the exterior algebra ΛẼ , must be captured by the cohomology class

2ch2(TX) − 2ch2(Ẽ). (5.32)

Since Ẽ = E∨, and ch2(E
∨) = ch2(E) = ch2(E), the cohomology class capturing the ob-

struction can actually be written as

2ch2(TX) − 2ch2(E), (5.33)

which in turn represents an element of H2(X,Ω2,cl
X ) (as explained in footnote 14). Notice

that the vanishing of (5.32) coincides with one of the anomaly-cancellation conditions of the

underlying twisted heterotic sigma model in (4.1)! In hindsight, this ‘coincidence’ should

not be entirely surprising - note that a physically valid sigma model must be defined over

all of E → X (and Σ). Since (5.32) captures the obstruction to gluing the local descriptions

together to form a global description, this implies that the sigma model, which is described

locally by the free bc-βγ system on Ẽf × U , cannot be globally-defined over all of E → X

unless (5.32) vanishes. Hence, the anomaly which obstructs the physical validity of the

underlying sigma model must be given by (5.32). Thus, the non-triviality of the extension

of Lie algebras of the symmetries of the bc-βγ system on Ẽf × U , is indeed related to the

physical anomaly of the underlying sigma model.

5.6 Gluing the local descriptions together

Now, we will describe explicitly, how one can glue the local descriptions together using

the automorphisms of the free bc-βγ system on Ẽf × U to obtain a globally-defined sheaf
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of chiral algebras. In the process, we will see how the cohomology class in (5.32) emerges

as an obstruction to gluing the locally-defined sheaves of chiral algebras globally on X.

Moreover, we can also obtain the other anomaly in (4.1) which is not captured in (5.32)

(for reasons we will explain shortly) when we consider gluing the sheaves of chiral algebras

globally over X and Σ. In addition, we will see that the moduli of the resulting sheaf

emerges as a Cech cohomology class generated by a relevant Cech cocycle.

To begin with, let’s take a suitable collection of small open sets Ua ⊂ Cn, where

n = dimCX. Next, consider the corresponding set of product spaces {Ẽf × Ua}. We want

to glue these trivial product spaces together to make a good cover of the holomorphic

vector bundle Ẽ → X. On each Ua, the sheaf Â of chiral algebras is defined by a free bc-βγ

system on {Ẽf × Ua} . We need to glue together these free conformal field theories to get

a globally-defined sheaf of chiral algebras.

It will be convenient for us to first describe how we can geometrically glue the set

of trivial product spaces {Ẽf × Ua} together to form the bundle Ẽ → X. For each a, b,

let us pick a product space Ẽf × Uab ⊂ Ẽf × Ua, and likewise another product space

Ẽf × Uba ⊂ Ẽf × Ub. Let us define a geometrical symmetry ĥab (given by a product of

holomorphic diffeomorphisms on U with holomorphic homeomorphisms of the fibre Ẽf )

between these product spaces as

ĥab : Ẽf × Uab
∼= Ẽf × Uba. (5.34)

Note that ĥ can be viewed as a geometrical gluing operator corresponding to an element

of the geometrical symmetry group H̃. From the above definition, we see that ĥba = ĥ−1
ab .

We want to identify an arbitrary point P ∈ Ẽf ×Uab with an arbitrary point Q ∈ Ẽf ×Uba

if Q = ĥab(P ). This identification will be consistent if for any Ua, Ub, and Uc, we have

ĥcaĥbcĥab = 1 (5.35)

in any triple intersection Uabc over which all the maps ĥca, ĥbc and ĥab are defined. The

relation in (5.35) tells us that the different pieces Ẽf ×Ua can be glued together via the set

of maps {ĥab} to make a holomorphic vector bundle Ẽ → X. The holomorphic structure

moduli of the bundle (or that of its dual E), and the complex structure moduli of its base,

will then manifest as parameters in the ĥab’s.

Suppose we now have a sheaf of chiral algebras on each Ua, and we want to glue them

together on overlaps to get a sheaf of chiral algebras on X. The gluing must be done using

the automorphisms of the conformal field theories. Thus, for each pair Ua and Ub, we

select a conformal field theory symmetry ĝab that maps the free bc-βγ system on Ẽf × Ua,

restricted to Ẽf ×Uab, to the free bc-βγ system on Ẽf ×Ub, similarly restricted to Ẽf ×Uba.

We get a globally-defined sheaf of chiral algebras if the gluing is consistent:

ĝcaĝbcĝab = 1. (5.36)

Note that ĝ can be viewed as a gluing operator corresponding to an element of the full

symmetry group G̃. As usual, we have ĝba = ĝ−1
ab . Moreover, recall at this point that from
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the exact sequence of groups in (5.30), we have a map G̃ → H̃ which ‘forgets’ the non-

geometrical symmetry group C̃ ⊂ G̃. As such, for any arbitrary set of ĝ’s which obey (5.36),

the geometrical condition (5.35) will be automatically satisfied, regardless of what the non-

geometrical gluing operator ĉ corresponding to an element of C̃ is. Hence, every possible

way to glue the conformal field theories together via ĝ, determines a way to geometrically

glue the set of product spaces {Ẽf × Ua} together to form a unique holomorphic vector

bundle Ẽ → X over which one defines the resulting conformal field theory.

The above discussion translates to the fact that for a given set of ĥab’s which

obey (5.35), the corresponding set of ĝab’s which obey (5.36) are not uniquely determined;

for each Uab, we can still pick an element Cab ∈ H0(Uab,Ω
2,cl) which represents an element

of c (as discussed in section 5.5), so that exp(Cab) represents an element of C̃. One can then

transform ĝab → ĝ′ab = exp(Cab)ĝab, where ĝ′ab is another physically valid gluing operator.

The condition that the gluing identity (5.36) is obeyed by ĝ′, i.e., ĝ′caĝ
′
bcĝ

′
ab = 1, is that in

each triple intersection Uabc, we should have

Cca + Cbc + Cab = 0. (5.37)

From ĝ′ba = (ĝ′ab)
−1, we have Cab = −Cba. Moreover, C̃ab ∼ Cab + Sa −Sb for some S, in the

sense that the C̃’s will obey (5.37) as well. In other words, the C’s in (5.37) must define an

element of the Cech cohomology group H1(X,Ω2,cl
X ). As usual, exp(Cab) is ‘forgotten’ when

we project from ĝ′ab to the geometrical gluing operator ĥab. Therefore, in going from ĝ to

ĝ′, the symmetry ĥ, and consequently the bundle Ẽ → X, remains unchanged. Now, let

us use a specific ĝ operator to define the specific symmetries of a free bc-βγ system, which

in turn will define a unique sheaf of chiral algebras. In this sense, given any sheaf and

an element C ∈ H1(X,Ω2,cl
X ), one can define a new sheaf by going from ĝ → exp(C)ĝ. So,

via the action of H1(X,Ω2,cl
X ), we get a family of sheaves of chiral algebras, with the same

target space Ẽ → X. Hence, the moduli of the sheaf of chiral algebras is represented by a

class in H1(X,Ω2,cl
X ). Together with the results of section 3.3, we learn that the analysis

of a family of sheaves of chiral algebras on a unique Kähler target space X, is equivalent

to the analysis of a unique sheaf of chiral algebras on a family {X ′} of non-Kähler target

spaces.

The anomaly. We now move on to discuss the case when there is an obstruction to the

gluing. Essentially, the obstruction occurs when (5.36) is not satisfied by the ĝ’s. In such

a case, one generally has, on triple intersections Uabc, the following relation

ĝcaĝbcĝab = exp(Cabc) (5.38)

for some Cabc ∈ H0(Uabc,Ω
2,cl). The reason for (5.38) is as follows. First, note that the l.h.s.

of (5.38) projects purely to the group of geometrical symmetries associated with ĥ. If the

bundle Ẽ → X is to exist mathematically, there will be no obstruction to its construction,

i.e., the l.h.s. of (5.38) will map to the identity under the projection. Hence, the r.h.s.

of (5.38) must represent an element of the abelian group C̃ (generated by c) that acts

trivially on the coordinates γi of the Ua’s and the local sections cm of the (Ẽf × Ua)’s.
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Recall that the choice of ĝab was not unique. If we transform ĝab → exp(Cab)ĝab via a

(non-geometrical) symmetry of the system, we get

Cabc → C′
abc = Cabc + Cca + Cbc + Cab. (5.39)

If it is possible to pick the Cab’s to set all C′
abc = 0, then there is no obstruction to gluing

and one can obtain a globally-defined sheaf of chiral algebras.

In any case, in quadruple overlaps Ua ∩ Ub ∩ Uc ∩ Ud, the C’s obey

Cabc − Cbcd + Ccda − Cdab = 0. (5.40)

Together with the equivalence relation (5.39), this means that the C’s in (5.40) must define

an element of the Cech cohomology group H2(X,Ω2,cl
X ). In other words, the obstruction

to gluing the locally-defined sheaves of chiral algebras is captured by a non-vanishing

cohomology class H2(X,Ω2,cl
X ). As discussed in section 4 and the last paragraph of section

5.5, this class can be represented in de Rham cohomology by 2[ch2(TX) − ch2(E)]. Thus,

we have obtained an interpretation of the anomaly in the twisted heterotic sigma model in

terms of an obstruction to a global definition of the sheaf of chiral algebras derived from a

free bc-βγ system that describes the sigma model locally on X.

The other anomaly. In section 4, we showed that the twisted heterotic sigma

model had two anomalies, one involving ch2(E) − ch2(TX), and the other involving

−1
2c1(Σ) (c1(E) + c1(TX)). We have already seen how the first anomaly arises from the

Cech perspective. How then can we see the second anomaly in the present context?

So far, we have constructed a sheaf of chiral algebras globally on X but only locally on

the worldsheet Σ. This is because the chiral algebra of the twisted heterotic sigma model

is not invariant under holomorphic reparameterisations of the worldsheet coordinates at

the quantum level,22 and as such, can only be given a consistent definition locally on an

arbitrary Riemann surface Σ. Since c1(Σ) can be taken to be zero when we work locally

on Σ, the second anomaly vanishes and therefore, we did not get to see it.

Now, note that the free bc-βγ system is conformally invariant; in other words, it can be

defined globally on an arbitrary Riemann surface Σ. But, notice that the anomaly that we

are looking for is given by −1
2c1(Σ)(c1(E)+c1(TX)) or equivalently, 1

2c1(Σ)(c1(Ẽ)−c1(TX)).

Hence, it will vanish even if we use a free bc-βγ system that can be globally-defined on Σ if

we continue to work locally on the bundle Ẽ → X where c1(Ẽ) = c1(TX) = 0. Therefore,

the only way to see the second anomaly is to work globally on both X (and hence Ẽ → X)

and Σ. (In fact, recall that the underlying sigma model is physically defined on all of Σ

and E → X.) We shall describe how to do this next.

Let us cover Σ and X with small open sets {Pτ} and {Ua} respectively. This will allow

us to cover Ẽ ×Σ with open sets Waτ = Ẽf ×Ua×Pτ . On each Pτ , we can define a free bc-βγ

system with target Ẽf × Ua. In other words, on each open set Waτ , we define a free bc-βγ

22To see this, recall from section 3.1 that in the quantum theory, the holomorphic stress tensor Tzz is not

in the Q+-cohomology (i.e. {Q+, Tzz} 6= 0) unless we have a stable bundle E with c1(X) = 0. This prevents

the Q+-cohomology and thus the chiral algebra from being invariant under arbitrary reparameterisations

of Σ.
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system and hence a sheaf of chiral algebras. What we want to do is to glue the sheaves of

chiral algebras on the (Ẽf ×Ua ×Pτ )’s together on overlaps, to get a globally-defined sheaf

of chiral algebras, with target space Ẽ → X, defined on all of Σ. As before, the gluing must

be done using the admissible automorphisms of the free bc-βγ system.

Recall from section 5.5 that the admissible automorphisms are given by the symmetry

group G̃. Note that the set of geometrical symmetries H̃ ⊂ G̃ considered in section 5.5 can

be extended to include holomorphic diffeomorphisms of the worldsheet Σ - as mentioned

above, the free bc-βγ system is conformally invariant and is therefore invariant under arbi-

trary holomorphic reparameterisations of the coordinates on Σ. Previously in section 5.5,

there was no requirement to consider and exploit this additional geometrical symmetry in

gluing the local descriptions together simply because we were working locally on Σ. Then,

gluing of the local descriptions at the geometrical level was carried out using H̃, where

H̃ consists of the group of holomorphic diffeomorphisms of X and the group of holomor-

phic homeomorphisms of the fibre Ẽf . Now that we want to work globally on Σ as well,

one will need to use the symmetry of the free conformal field theory under holomorphic

diffeomorphisms of Σ to glue the Pτ ’s together to form Σ. In other words, gluing of the

local descriptions at the geometrical level must now be carried out using the geometrical

symmetry group H̃ ′, where H̃ ′ consists of the group of holomorphic diffeomorphisms on

Σ and X, and the group of holomorphic homeomorphisms of the fibre Ẽf . Now, let the

conformal field theory gluing map from Waτ to Wbν be given by ĝaτ,bν . Let the correspond-

ing geometrical and non-geometrical gluing maps from Waτ to Wbν be given by ĥ′
aτ,bν and

ĉ′aτ,bν respectively. Since we have a sensible notion of a holomorphic map γ : Σ → X, and

the bundle Ẽ and worldsheet Σ are defined to exist mathematically, there is no obstruction

to gluing at the geometrical level, i.e.,

ĥ′
cσ,aτ ĥ′

bν,cσĥ′
aτ,bν = 1 (5.41)

in triple intersections. There will be no obstruction to gluing at all levels if one has the

relation

ĝcσ,aτ ĝbν,cσĝaτ,bν = 1. (5.42)

However, (5.42) may not always be satisfied. Similar to our previous arguments concerning

the anomaly 2ch2(TX) − 2ch2(E) ∈ H2(X,Ω2,cl
X ), since one has a map ĝaτ,bν → ĥ′

aτ,bν in

which ĉ′aτ,bν is ‘forgotten’, in general, we will have

ĝcσ,aτ ĝbν,cσ ĝaτ,bν = exp(Caτbνcσ), (5.43)

where the Caτbνcσ’s on any triple overlap defines a class in the two-dimensional Cech coho-

mology group H2(X ×Σ,G). G is a sheaf associated with the non-geometrical symmetries

of the free bc-βγ system. Being non-geometrical in nature, these symmetries will act triv-

ially on the γi coordinates of X and the sections cm (and bm) of the pull-back γ∗(Ẽ) (and

γ∗(Ẽ∨)).

Earlier on in our discussion, when we worked locally on Σ but globally on X, we

constructed a U(1) R-invariant dimension one current JB from a (1, 0)-form B on X, whose

conserved charge KC was shown to generate the non-geometrical symmetries of the free
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bc-βγ conformal field theory. Therefore, if one works globally on both Σ and X, one will

need to construct an analogous U(1) R-invariant dimension one current JB′ from a (1, 0)-

form B′ on X × Σ, such that the corresponding conformally-invariant conserved charge

will generate the non-geometrical symmetries in this extended case. Since the current JB′

should have non-singular OPE’s with the γ, c and b fields, it can only depend linearly

on ∂zγ and be holomorphic in γ and z. Thus, the non-geometrical symmetries will be

generated by the conserved charge
∮

JB′dz, with

JB′ = Bi(γ, z)∂zγ
i + BΣ(γ, z). (5.44)

Here, Bi and BΣ are components of a holomorphic (1, 0)-form B′ = Bidγi+BΣdz on X×Σ,

where Bi and BΣ have scaling dimension zero and one respectively, i.e., for z → z̃ = λz,

we have Bi(γ, z) → Bi(γ, z̃) = Bi(γ, z), and BΣ(γ, z) → BΣ(γ, z̃) = λ−1BΣ(γ, z).

If B′ is exact, i.e, B′ = ∂H ′ for some local function H ′(γ, z) on X × Σ holomorphic

in γ and z, we will have Bi = ∂iH
′ and BΣ = ∂zH

′. As a result, the conserved charge∮
JB′dz =

∮
(∂iH

′)dγi + (∂zH
′)dz =

∮
dH ′ = 0 by Stoke’s theorem. Using the same

arguments found in section 5.5 (where we discussed the conserved charge KC), we learn

that for every non-vanishing holomorphic (2, 0)-form C ′ = ∂B′ on X×Σ, we will have a non-

vanishing conserved charge KC′ =
∮

JB′dz. Since C ′ is ∂-closed, it is a local holomorphic

section of Ω2,cl
X×Σ. Therefore, we find that the sheaf associated with the non-geometrical

symmetries that act trivially on γ, c and b, is isomorphic to Ω2,cl
X×Σ. Thus, the obstruction

to a globally-defined sheaf of chiral algebras, with target space Ẽ → X, defined on all of Σ,

will be captured by a class in the Cech cohomology group H2(X × Σ,Ω2,cl
X×Σ). Hence, the

physical anomalies of the underlying sigma model ought to be captured by the de Rham

cohomology classes which take values in H2(X × Σ,Ω2,cl
X×Σ).

In fact, since Σ is of complex dimension one, its space of (2, 0)-forms vanishes. Thus,

we will have Ω2,cl
X×Σ = (Ω2,cl

X ⊗ OΣ) ⊕ (Ω1,cl
X ⊗ Ω1,cl

Σ ) (where OΣ is the sheaf of holomor-

phic functions on Σ). In other words, on a compact Riemann surface Σ, where the only

holomorphic functions over it are constants, i.e., H0(Σ,O) ∼= C, we have the expansion

H2(X × Σ,Ω2,cl
X×Σ) = H2(X,Ω2,cl

X ) ⊕ (H1(X,Ω1,cl
X ) ⊗ H1(Σ,Ω1,cl

Σ )) ⊕ . . . , (5.45)

Recall that in section 4, we showed that c1(Σ) ∈ H1(Σ,Ω1,cl
Σ ) and (c1(Ẽ)− c1(TX)) =

−(c1(E)+c1(TX)) ∈ H1(X,Ω1,cl
X ). Hence, the two physical anomalies ch2(E)−ch2(TX) and

−1
2c1(Σ)(c1(E) + c1(TX)), take values in the first and second term on the r.h.s. of (5.45)

respectively. Note that the terms on the r.h.s. of (5.45) must independently vanish for

H2(X × Σ,Ω2,cl
X×Σ) to be zero. In other words, we have obtained a consistent, alternative

interpretation of the physical anomalies which arise due to a non-triviality of the deter-

minant line bundles (associated with the Dirac operators of the underlying sigma model)

over the space of gauge-inequivalent connections, purely in terms of an obstruction to the

gluing of sheaves of chiral algebras.

By extending the arguments surrounding (5.37) to the present context, we find that

for a vanishing anomaly, (apart from the geometrical moduli encoded in the holomorphic

and complex structures of the bundle Ẽ → X (or that of its dual E → X)), the moduli
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of the globally-defined sheaf of chiral algebras on Σ, with target space Ẽ → X, (or in the

context of the underlying twisted heterotic sigma model that the bc-βγ system describes

locally, the target space E → X), must be parameterised by H1(X × Σ,Ω2,cl
X×Σ).

5.7 The conformal anomaly

In this section, we will demonstrate an application of the rather abstract discussion thus

far. In the process, we will be able to provide a physical interpretation of a computed

mathematical result and vice-versa.

From eq. (3.1), we see that the holomorphic stress tensor T (z) ∼ Tzz of the twisted

heterotic sigma model lacks the ψī fields.23 In other words, it is an operator with qR = 0.

Hence, from the Q+-Cech cohomology dictionary established in section 5.3, if T (z) is to

be non-trivial in Q+-cohomology, such that the sigma model and its chiral algebra are

conformally-invariant, it will be given by an element of H0(X, Â), that is, a global section

of the sheaf of chiral algebras Â. Recall that the local sections of Â are furnished by the

physical operators in the chiral algebra of the free (linear) bc-βγ system. Since the free

(linear) bc-βγ system describes a local version of the underlying twisted heterotic sigma

model, one can write the local holomorphic stress tensor of the sigma model as the local

holomorphic stress tensor of the free (linear) bc-βγ system, which in turn is given by

T (z) = − : βi∂zγ
i : − : bm∂zc

m : . (5.46)

(see section 5.4). Under an automorphism of the bc-βγ system, T (z) will become

T̃ (z) = − : β̃i∂z γ̃
i : − : b̃m∂z c̃

m :, (5.47)

where the fields β̃, γ̃, b̃ and c̃ are defined in the automorphism relations of (5.23)–(5.26).

It is clear that on an overlap Ua ∩ Ub in X, T (z) will be regular in Ua while T̃ (z) will be

regular in Ub. Note that both T (z) and T̃ (z) are at least local sections of Â. And if there

is no obstruction to T (z) or T̃ (z) being a global section of Â, it will mean that T (z) is

non-trivial in Q+-cohomology, i.e., T (z) 6= {Q+, . . . } and [Q+, T (z)] = 0, and the sigma

model will be conformally-invariant. For T (z) or T̃ (z) to be a global section of Â, it must

be true that T (z) = T̃ (z) on any overlap Ua ∩ Ub in X. Let us examine this further by

considering an example.

For ease of illustration, we shall consider an example whereby dimCX = rank(E) = 1,

say E is a certain U(1) line bundle over X = CP1. In order for us to consider an underlying

sigma model that is physically-consistent (whereby one can at least define a sheaf of chiral

algebras globally over CP1), we require that E be chosen such that ch2(E) = ch2(TCP1).

However, we do not necessarily require that −c1(E) = c1(TCP1) or equivalently, c1(Ẽ) =

c1(TCP1) (and why this is so would be clear momentarily). Since CP1 can be considered as

the complex γ-plane plus a point at infinity, we can cover it with two open sets, U1 and U2,

where U1 is the complex γ-plane, and U2 is the complex γ̃-plane, such that γ̃ = 1/γ. And

since E and therefore Ẽ is a U(1) line bundle, the transition function A in (5.23)–(5.26)

23Recall that this is also true in the quantum theory as the classical expression for T (z) does not receive

any perturbative corrections up to 1-loop.
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will be given by eiθ(γ), where θ(γ) is some real, holomorphic function of γ. By substituting

the definitions of β̃, γ̃, b̃ and c̃ from (5.23)–(5.26) into T̃ (z), we compute that24

T̃ (z) − T (z) = ∂z

(
∂zγ

γ

)
+ . . . , (5.48)

where “. . . ” are terms involving the fields b, c and the function θ(γ). Note that in general,

there is no sensible way to remove the terms on the r.h.s. of (5.48) through a consistent

redefinition of T (z) and T̃ (z) (such that T (z) and T̃ (z) continue to be invariant under

the symmetries of the terms on the r.h.s. of (5.48), and have the correct OPE’s, as stress

tensors, with the elementary fields β, γ, b and c). Hence, we find that neither T (z) nor

T̃ (z) can be a global section of Â, i.e., T (z), T̃ (z) /∈ H0(CP1, Â). In other words, T (z)

is not in the Q+-cohomology of the sigma model; there is a conformal anomaly. This is

consistent with an earlier observation made in section 3.1 via eq. (3.6), where [Q+, Tzz] 6= 0

in general but

[Q+, Tzz] = ∂z(Rij̄∂zφ
iψj̄) + . . . . (5.49)

Note that since Q+ generates the BRST symmetry (i.e. an automorphism) of the twisted

heterotic sigma model via the field transformations (2.11), (5.48) will be an analog in Cech

cohomology of the relation (5.49) (as briefly mentioned in footnote 5 of section 3.1). In

fact, Rij̄∂zφ
iψj̄ can be interpreted as the counterpart of the term ∂zγ/γ in conventional

physics notation as follows. Apart from an obvious comparison of (5.49) and (5.48), note

that ∂zγ/γ = −∂z γ̃/γ̃, i.e., ∂zγ/γ is a holomorphic operator over U1 ∩ U2. Moreover, it

cannot be expressed as a difference between an operator that is holomorphic in U1 and

an operator that is holomorphic in U2. Thus, it is a dimension one class in the first Cech

cohomology group H1(CP1, Â). Hence, from our Q+-Cech cohomology dictionary, ∂zγ/γ

will correspond to a dimension one operator in the Q+-cohomology of the sigma model

with qR = 1, namely Rij̄∂zφ
iψj̄ (which indeed takes the correct form of a Q+-invariant,

dimension (1, 0) operator with qR = 1 as discussed in section 5.1). Since the Ricci tensor

Rij̄ is proportional to the one-loop beta-function of the sigma model, this correspondence

allows one to interpret the one-loop beta-function purely in terms of holomorphic data.

One can certainly consider other higher-dimensional examples in a similar fashion.

In fact, it can be shown mathematically that T̃ (z) 6= T (z) for any X and Ẽ if [c1(Ẽ) −

c1(TX)] 6= 0 [1, 6]. One can indeed see that [c1(Ẽ) − c1(TX)] = −[c1(E) + c1(TX)]

characterises a conformal anomaly of the twisted heterotic sigma model as follows. Recall

from section 3.1 that the r.h.s. of (5.49) captures the violation in the conformal structure of

the sigma model by the one-loop beta-function. It will vanish if X is a Ricci-flat manifold

and if the curvature of the bundle E obeys the Donaldson-Uhlenbeck-Yau equation. Both

these conditions can be trivially satisfied if c1(TX) = c1(E) = 0, which then implies that

−[c1(E) + c1(TX)] = 0.

Thus, the obstruction to a globally-defined T (z) operator, characterised by a non-

vanishing cohomology class [c1(E) + c1(TX)], translates to a lack of invariance under arbi-

24Note that in our computation, we have conveniently chosen the arbitrary, local (1,0)-form B(γ)dγ on

CP1 (associated with the current JB of section 5.5) to be one with B(γ) = 2γ.
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trary, holomorphic reparameterisations on the worldsheet Σ of the Q+-cohomology of the

underlying twisted heterotic sigma model.

6. The half-twisted B-model and the mirror chiral de Rham complex

In this section, we shall consider a specific situation in which one of the two anomalies

discussed in section 5.6 automatically vanish, thus enabling us to consider, in section 7,

other interesting and physically consistent applications of the sheaf of chiral algebras that

we have been studying so far. In the process, we will be able to furnish a purely physical

interpretation of the sheaf of CDO’s defined by Malikov et al. in [1] known as the mirror

chiral de Rham complex. From the physical definition of the elliptic genus as a specialisation

of the genus one partition function, and the CFT state-operator correspondence for a

Calabi-Yau target-space, we can express the elliptic genus in terms of the sheaf cohomology

of the mirror CDR. In addition, via an equivalence of elliptic genera under mirror symmetry,

we can in turn derive a novel, mathematical expression which relates the sheaf cohomology

of the CDR on X̃, to the sheaf cohomology of the mirror CDR on X, where X and X̃ are

a mirror pair of Calabi-Yau’s.

6.1 The (2, 2) locus and the half-twisted B-model

The (2, 2) locus is defined as the set in the moduli space of holomorphic vector bundles

E whereby E = TX. Thus, notice that on the (2, 2) locus, the anomaly of the underly-

ing twisted heterotic sigma model quantified by ch2(E) − ch2(TX), vanishes. However,

the second anomaly, now quantified by c1(Σ)c1(TX), will be non-vanishing for a general

worldsheet Σ unless c1(TX) = 0. Incidentally, this is the same as the anomaly cancellation

condition for the topological B-model. In addition, rank(E) = r = dimCX = n, and the

constraint relation discussed at the end of section 5.3 now becomes ΛnTX ∼= KX , which in

turn implies that one must have K⊗2
X

∼= OX , instead of the stronger Calabi-Yau condition

KX
∼= OX . This condition has also been derived using a more sophisticated approach in

annex A of [16].

Since E = TX at the (2, 2) locus, one can make the following field replacements:

λa → λi, λa
z → λi

z, A(φ) → Γ(φ) and F (φ) → R(φ), where A(φ) and F (φ) are the

connection and field strength of the gauge bundle E , while Γ(φ) and R(φ) are the affine

connection and Riemann curvature of X. In making these replacements in Spert of (2.15),

we find that the action of the underlying twisted sigma model at the (2, 2) locus will be

given by

S(2,2) =

∫

Σ
|d2z|

(
gij̄∂zφ

j̄∂z̄φ
i + ψz̄j̄Dzψ

j̄ + λiDz̄λ
i
z − Rīk

jl̄ ψz̄īλkλ
j
zψ

l̄
)

, (6.1)

where ψz̄j̄ = gij̄ψ
i
z̄, λi = gij̄λ

j̄, and i, j, k, l = 1, 2, . . . ,dimCX. As usual, Rik̄jl̄ is the cur-

vature tensor with respect to the Levi-Civita connection Γi
lj = gik̄∂lgjk̄, and the covariant

derivatives with respect to the connection induced on the worldsheet are given by

Dzψ
j̄ = ∂zψ

j̄ + Γj̄
īk̄∂zφ

īψk̄, Dz̄λ
i
z = ∂z̄λ

i
z + Γi

jk∂z̄φ
jλk

z . (6.2)
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Note that S(2,2) is equivalent to the topological B-model action defined by Witten in [33].25

Indeed, the theory defined by S(2,2) exhibits a topological B-model anomaly as pointed out

earlier.

Let us now discuss the classical symmetries of the action S(2,2). Firstly, note that S(2,2)

has a left and right-moving ghost number symmetry whereby the left-moving fermionic

fields transform as λi
z → eiαψi and λi → e−iαλi, and the right-moving fermionic fields

transform as ψī → eiαψī and ψz̄ī → e−iαψz̄ī, where α is real. In other words, the fields λi
z,

λi, ψī and ψz̄ī can be assigned the (gL, gR) left-right ghost numbers (1, 0), (−1, 0), (0, 1)

and (0,−1), respectively. The infinitesimal version of this symmetry transformation of the

left-moving fermi fields read (after absorbing some trivial constants)

δλi
z = λi

z, δλi = −λi, (6.3)

while those of the right-moving fermi fields read

δψī = ψī, δψz̄j̄ = −ψz̄j̄ . (6.4)

The conserved holomorphic (i.e., left-moving) current associated with the transforma-

tion (6.3) will then be given by

J(z) = λi
zλi. (6.5)

J(z) is clearly a dimension one bosonic current. (There is also an anti-holomorphic con-

served current associated with the right-moving ghost symmetry. However, it is irrelevant

to our discussion). Secondly, note that S(2,2) is also invariant under the following field

transformations:

δφī = λī, δφi = 0,

δλi
z = −∂zφ

i, δψī = −Γī
j̄k̄λ

j̄ψk̄, (6.6)

δψi
z̄ = 0, δλī = 0.

The conserved, dimension one fermionic current in this case will be given by

Q(z) = −λk∂zφ
k. (6.7)

For later convenience, let us label the charge corresponding to the current Q(z) as QL.

Note that QL is sometimes written as Q− in the physics literature.

The third set of field transformations that leave S(2,2) invariant is given by

δφī = ψī, δφi = 0,

δψi
z̄ = −∂z̄φ

i, δλī = −Γī
j̄k̄ψ

j̄λk̄, (6.8)

δλi
z = δλi = 0, δψī = 0.

25The action S(2,2) just differs from the explicit form of the B-model action in [33] by a trivial redefinition

of the fermi fields, and an integration by parts of the kinetic term of the right-moving fermions on a

worldsheet Σ without boundary.
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The corresponding current of the above symmetry is given by QR(z̄) = gij̄ψ
j̄∂z̄φ

i. Similarly,

let us label the conserved charge of QR(z̄) as QR. Note that QR is just Q+ of section 2.2 at

the (2, 2) locus - from the supersymmetry variations in (2.11), and the action Spert in (2.15),

we find that the supercurrent of the scalar supercharge Q+ is given by Q+(z̄) = gij̄ψ
j̄∂z̄φ

i,

which actually coincides with QR(z̄).

In Witten’s topological B-model, the BRST-charge operator that defines the BRST

cohomology is given by QBRST = QL + QR, where QL and QR are the above-mentioned

left and right-moving (scalar) supercharges which generate the symmetry transformations

in (6.6) and (6.8), respectively. However, in considering the cohomology of local operators

with respect to only Q+, we are actually dealing with a greatly enriched variant in which

one ignores QL and considers QR as the sole effective BRST operator. We shall call this

variant the half-twisted B-model. Since the cohomology of local operators is now defined

with respect to a single, right-moving, scalar supercharge QR, its classes need not be

restricted to dimension (0, 0) operators (which correspond to ground states). In fact, the

physical operators will have dimension (n, 0), where n ≥ 0. Let us verify this important

statement next.

From (6.1), we find that the anti-holomorphic stress tensor takes the form

Tz̄z̄ = gij̄∂z̄φ
i∂z̄φ

j̄ + gij̄ψ
i
z̄

(
∂z̄ψ

j̄ + Γj̄
l̄k̄

∂z̄φ
l̄ψk̄

)
. One can go on to show that Tz̄z̄ =

{QR,−gij̄ψ
i
z̄∂z̄φ

j̄}, that is, Tz̄z̄ is trivial in QR-cohomology. Hence, from the arguments in

section 3.1, we learn that operators which are non-trivial in the QR-cohomology must have

scaling dimension (n, 0), where n ≥ 0.

On the other hand, the holomorphic stress tensor is given by Tzz = gij̄∂zφ
i∂zφ

j̄ +

λi
zDzλi, and one can verify that it can be written as Tzz = {QL,−gij̄λ

i
z∂zφ

j̄}, that is, it is

QL-exact. Since we are only interested in QR-closed modulo QR-exact operators, there is no

restriction on the value that n can take. These arguments persist in the quantum theory,

since a vanishing cohomology in the classical theory continues to vanish when quantum

effects are small enough in the perturbative limit.

Consequently, in contrast to the topological B-model, the BRST spectrum of physical

operators and states in the half-twisted variant is infinite-dimensional. A specialisation of

its genus one partition function, also known as the elliptic genus of X, is given by the index

of the QR operator. Indeed, the half-twisted model is not a topological field theory, rather,

it is a 2d conformal field theory - the full stress tensor derived from its action is exact with

respect to the combination QL + QR, but not QR alone.

In fact, more can be said about the observables of the half-twisted B-model. By the

same argument in section 3.1, we can show that a local operator O, as an element of the

QR-cohomology, varies holomorphically with z. Moreover, this observation will continue

to hold at the quantum level. In addition, since the holomorphic stress tensor can be

verified to be QR-closed but not QR-exact (even at the quantum level), the space of local

operators will be invariant under holomorphic reparameterisations of the coordinates on

the worldsheet.

Again, via the same arguments in section 3.1, one finds that the correlation functions

of local physical operators are always holomorphic in z. One also finds that because the
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trace of the stress tensor is also trivial in QR-cohomology, the correlation functions of

operators will continue to be invariant under arbitrary scalings of Σ. Thus, the correlation

functions are always independent of the Kähler structure on Σ but vary holomorphically

with its complex structure (as is familiar for chiral algebras). Since the correlation functions

are holomorphic in the parameters of the theory, they are protected from perturbative

corrections.

Similar to the situation away from the (2, 2) locus as discussed in section 3.1, the

QR-cohomology of holomorphic local operators has a natural structure of a holomorphic

chiral algebra that we shall similarly denote as A; in addition to having holomorphic

expansion coefficients fk, the OPE’s of the local operators in the chiral algebra also obey

the usual relations of holomorphy, associativity, and invariance under scalings and arbitrary

holomorphic reparameterisations of z.

Last but not least, based on the discussion in sections 3.2 and 3.3, a moduli for the

chiral algebra can be incorporated into the half-twisted B-model by introducing a non-

Kähler deformation of X via the addition of the H-flux term (3.9) to the action S(2,2). As

argued in section 5.6, the moduli of the corresponding, globally-defined sheaf of CDO’s on

X can then be represented by a class in H1(X,Ω2,cl
X ) through this H-flux term.

A holomorphic twisted N = 2 superconformal algebra. We shall now examine the

holomorphic structure of the half-twisted B-model with action S(2,2). The reason for doing

so is that some of its non-trivial aspects can be captured by the characteristics of the sheaf

of chiral algebras describing the sigma model on X. Moreover, similar to what we had

seen in section 5.7, one can also derive an interpretation of these non-trivial aspects purely

in terms of mathematical data and vice-versa. We will demonstrate these claims shortly

when we consider an example in section 7.1.

Let us write the conserved, dimension two holomorphic stress tensor associated with

the symmetry under holomorphic reparameterisations of the coordinates on the worldsheet

as T (z) = −Tzz . Recall that it is given by

T (z) = −gij̄∂zφ
i∂zφ

j̄ − λi
zDzλi. (6.9)

Also recall that one can write T (z) = {QL, G(z)} = δG(z), the variation of G(z) under the

field transformations (6.6), where

G(z) = gij̄λ
i
z∂zφ

j̄. (6.10)

Hence, G(z) is a conserved, dimension two fermionic current. Notice that the conserved

currents and tensors J(z), Q(z), T (z), G(z) possess only holomorphic scaling dimensions.

Thus, their respective spins will also be given by their dimensions.

One can verify that J(z), Q(z), T (z) and G(z) are all invariant under the field

transformations of (6.8). In fact, we find that J(z), Q(z), T (z) and G(z) are all QR-

closed operators in the QR-cohomology of the half-twisted B-model, at least at the clas-

sical level. Also note that if O and O′ are QR-closed operators in the QR-cohomology,

i.e., {QR,O} = {QR,O′} = 0, then {QR,OO′} = 0. Moreover, if {QR,O} = 0, then
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O{QR,W} = {QR,OW} for any operator W . These two statements mean that the coho-

mology classes of operators that (anti)commute with QR form a closed (and well-defined)

algebra under operator products. One can indeed show that J(z), Q(z), T (z) and G(z)

form a complete multiplet which generates a closed, holomorphic, (twisted ) N = 2 super-

conformal algebra with the following OPE relations:

T (z)T (w) ∼
2T (w)

(z − w)2
+

∂T (w)

z − w
(6.11a)

J(z)J(w) ∼
d

(z − w)2
; T (z)J(w) ∼

d

(z − w)3
+

J(w)

(z − w)2
+

∂J(w)

z − w
(6.11b)

G(z)G(w) ∼ 0; T (z)G(w) ∼
2G(w)

(z − w)2
+

∂G(w)

z − w
; J(z)G(w) ∼

G(w)

z − w
(6.11c)

Q(z)Q(w) ∼ 0; T (z)Q(w) ∼
Q(w)

(z − w)2
+

∂Q(w)

z − w
; J(z)Q(w) ∼ −

Q(w)

z − w
(6.11d)

Q(z)G(w) ∼
d

(z − w)3
+

J(w)

(z − w)2
+

T (w)

z − w
, (6.11e)

where d = dimCX. This structure is isomorphic to a structure of a topological vertex

algebra of rank d defined in the mathematical literature [3]. From (6.10e) above, we see

that G(z) is a (worldsheet) superpartner of T (z) under the supersymmetry generated by

the charge QL of the supercurrent Q(z). This observation will be relevant to our discussion

momentarily. Also notice that the central charge in the stress tensor OPE (6.10a) is zero.

This means that the Weyl anomaly vanishes and that the trace of the stress tensor is

trivial in QR-cohomology at the quantum level. This simply reflects the invariance of the

correlation functions under scalings of the worldsheet as noted earlier.

The classical, holomorphic, OPE algebra of the half-twisted B-model given by (6.10a)-

(6.10e) may or may not persist in the quantum theory. In fact, in a ‘massive’ model

where the first Chern class c1(X) is non-zero, the symmetry of the theory under arbitrary

holomorphic reparameterisations of the worldsheet coordinates associated with T (z) will

be broken. Likewise for the symmetry associated with its superpartner G(z). Hence, the

generators T (z) and G(z) of the holomorphic, (twisted) N = 2 superconformal algebra

(which defines the B-model), will cease to remain as valid physical operators in the QR-

cohomology at the quantum level. This is consistent with the fact that the conformal

anomaly discussed in section 5.7 will be non-vanishing for c1(X) 6= 0. We will examine this

more closely from a different point of view when we consider an explicit example in section

7.1, where we describe the chiral algebra of the half-twisted B-model in terms of a sheaf of

mirror CDR. Once again, we will be able to obtain a purely mathematical interpretation of

this physical observation. In particular, we can interpret the non-vanishing beta-function

solely in terms of holomorphic data.

QR-cohomology classes of local operators. We shall now discuss the QR-cohomology

of local operators which furnish a holomorphic chiral algebra A of the half-twisted B-

model. Note that we can describe the structure of the chiral operators in the half-

twisted B-model by specialising the arguments made in section 5.1 to the case where
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E = TX. This can be achieved by making the field replacements λa → λi (where

λi ∈ Φ∗(T ∗X)) and λa
z → λi

z (where λi
z ∈ K ⊗ Φ∗(TX)). In general, we find that

a local operator F in the QR-cohomology of the half-twisted B-model will be given by

F(φi, ∂zφ
i, ∂2

zφi, . . . ;φī, ∂zφ
ī, ∂2

zφī, . . . ;λi, ∂zλi, ∂
2
z λi . . . ;λ

i
z, ∂zλ

i
z, ∂

2
zλi

z . . . ;ψī). If F is ho-

mogeneous of degree k in ψī, then it has ghost number (gL, gR) = (p, k), where p is deter-

mined by the net number of λi
z over λi fields (and/or of their corresponding derivatives) in

F . An operator F(φi, ∂zφ
i, . . . ;φī, ∂zφ

ī, . . . ;λi, ∂zλi, . . . ;λ
i
z, ∂zλ

i
z, . . . ;ψ

ī) with qR = k can

be interpreted as a (0, k)-form on X with values in a certain tensor product bundle. Let

us see this more explicitly.

For example, a dimension (0, 0) operator will generally take the form F(φi, φī;λj ;ψ
j̄) =

f
i1,...,iq
j̄1,...,j̄k

(φk, φk̄)λi1 . . . λiqψ
j̄i . . . ψj̄k . Such an operator will correspond to an ordinary (0, k)-

form with values in ΛqTX, the antisymmetric qth exterior power of the holomorphic tangent

bundle of X, which one can write explicitly as ∂
∂φi1

. . . ∂
∂φiq

f
i1,...,iq
j̄1,...,j̄k

dφj̄1 . . . dφj̄k . In other

words, a dimension (0, 0) operator will correspond to an element of the sheaf cohomology

group Hk(X,ΛqTX). This observation will be important shortly when we discuss the

topological chiral ring of ground operators.

For dimension (1, 0) operators, one can have four cases. In the first case, we can have

an operator F(φl, φl̄; ∂zφ
ī, λm;ψj̄) = f

j;m1,...,mq

j̄1,.........,j̄k
(φl, φl̄)gjī∂zφ

īλm1 . . . λmqψ
j̄i . . . ψj̄k that is

linear in ∂zφ
ī. Such an operator will correspond to a (0, k)-form on X with values in

the tensor product of the holomorphic tangent bundle TX and ΛqTX, the antisymmet-

ric qth exterior power of the same bundle. In the second case, we can have an opera-

tor F(φl, φl̄; ∂zφ
i, λm;ψj̄) = f

j̄;m1,...,mq

j̄1,.........,j̄k
(φl, φl̄)gj̄i∂zφ

iλm1 . . . λmqψ
j̄1 . . . ψj̄k that is linear in

∂zφ
i. Such an operator will correspond to a (0, k)-form on X with values in the ten-

sor product of the bundle TX and ΛqTX. In the third case, we can have an operator

F(φl, φl̄;λm, ∂zλi;ψ
j̄) = f

m1,...,mq

j̄;j̄1,...,j̄k
(φl, φl̄)gj̄i∂zλiψ

j̄1 . . . ψj̄kλm1 . . . λmq that is linear in ∂zλi

and does not depend on any other derivatives. Such an operator corresponds to a (0, k)-

form on X with values in the (antisymmetric) tensor product bundle of E with ΛqTX,

where the local holomorphic sections of the bundle E are spanned by ∂zλi, the z-derivative

of the sections of the holomorphic cotangent bundle of X. In the last case, we have an

operator F(φl, φl̄;λk, λ
i
z;ψ

j̄) = f
k1,...,kq

i;j̄1,...,j̄k
(φl, φl̄)λi

zψ
j̄i . . . ψj̄kλk1 . . . λkq

; here, F may depend

on φi, φī, λk and λi
z, but not on their derivatives. Such an operator corresponds to a

(0, k)-form on X with values in the (antisymmetric) tensor product bundle of T ∗X with

ΛqTX. In a similiar fashion, for any integer n > 0, the operators of dimension (n, 0) and

charge qR = k can be interpreted as (0, k)-forms with values in a certain tensor product

bundle over X. This structure persists in quantum perturbation theory, but there may be

perturbative corrections to the complex structure of the bundle.

Based on the discussion in section 5.1, the action of Q+ = QR on the above local

operators can be succintly described as follows. Firstly, at the classical level, QR does not

act as ∂̄ = dφī∂/∂φī on a general operator F that contains the derivatives ∂m
z φī for m > 0.

However, it will act as such on dimension (0, 0) operators (since m = 0 and δλi = 0), in the

absence of perturbative corrections. Secondly, if X is flat, QR will act as the ∂̄ operator on

any F at the classical level - the equation of motion Dzψ
ī = 0 ensures that the action of QR
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on derivatives ∂m
z φī for m > 0 can be ignored, and since δλi = δλi

z = 0, one can also ignore

the action of QR on the λi and λi
z fields and their derivatives ∂m

z λi and ∂l
zλ

m
z with m > 0.

At the quantum level, for X a flat manifold, QR may receive perturbative corrections from

∂̄-cohomology classes that are constructed locally from the fields appearing in the action

such as the class in H1(X,Ω2,cl
X ).

A topological chiral ring. From the arguments in section 5.2, we learn that the QR-

invariant ground (i.e. dimension (0, 0)) operators F̃ define a topological chiral ring via their

OPE

F̃aF̃b =
∑

qc=qa+qb

Cabc F̃c, (6.12)

where Cabc are structure constants, antisymmetric in their indices, and qa and qb represent

the (gL, gR) ghost number of F̃a and F̃b respectively. The ring is effectively Z2 × Z2

graded in the absence of non-perturbative worldsheet instantons. At the classical level

(in the absence of perturbative corrections), QR acts as Qcl = ∂̄ on any dimension (0, 0)

operator F̃ . As explained above, since an arbitrary dimension (0, 0) operator F̃d with

(gL, gR) = (−q, k) corresponds to an an element f
i1,...,iq
j̄1,...,j̄k

∂
∂φi1

∧· · ·∧ ∂
∂φiq

∧dφj̄1 ∧· · ·∧dφj̄k of

the sheaf cohomology group Hk(X,ΛqTX), the classical ring is just the graded Dolbeault

cohomology ring H∗
∂̄
(X,Λ∗TX). Alternatively, via the Cech-Dolbeault isomorphism in

ordinary differential geometry, the classical ring can also be interpreted as the graded Cech

cohomology ring H∗(X,Λ∗TX). The operators F̃ will either be non-Grassmannian or

Grassmannian, obeying either commutators or anti-commutators, depending on whether

they contain an even or odd number of fermionic ψ and λ fields.

6.2 Sheaf of mirror chiral de Rham complex

We shall now summarise the results of sections 5.3, 5.4 and 5.5 that have been specialised

to the case where E = TX. This will allow us to describe the appropriate sheaf of CDO’s

associated with the half-twisted B-model on a complex, hermitian manifold X.

Firstly, note that as in the twisted heterotic sigma model of section 2, the perturbative

chiral algebra A of local, holomorphic operators F in the QR-cohomology of the half-twisted

B-model can also be described via Cech cohomology. (This is true because QR also acts

as the ∂̄ operator on any F in the half-twisted B-model over an open set U in X, and the

results in section 5.3 are established based on this ∂̄-action of the BRST supercharge on

the local operators in U ⊂ X.) In particular, let the sheaf Â of chiral algebras have as its

local sections the QR-closed operators F̂(φi, ∂zφ
i, . . . ; ∂zφ

ī, . . . ;λi, ∂zλi, . . . ;λ
i
z, ∂zλ

i
z, . . . )

that are ψī-independent (i.e. gR = 0) and φī-independent, with arbitrary integer values of

gL. Then, the QR-cohomology of local operators can be described in terms of the Cech

cohomology of Â for all gR in quantum perturbation theory; the perturbative chiral algebra

A will thus be given by
⊕

gR
HgR

Cech(X, Â) as a vector space.

The local action and its holomorphic structure. Next, we shall now describe

the local structure of the sheaf Â. Since E = TX, the local action (derived from a flat
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hermitian metric) of the half-twisted B-model on a small open set U ⊂ X will be given by

I =
1

2π

∫

Σ
|d2z|

∑

i,j̄

δij̄

(
∂zφ

j̄∂z̄φ
i + λj̄∂z̄λ

i
z + ψi

z̄∂zψ
j̄
)

, (6.13)

where λj̄ is a scalar on Σ with values in the pull-back bundle Φ∗(TX), and δij̄λ
j̄ =

λi. Note that locally on U , the Ricci tensor vanishes and the term containing the

class H1(X,Ω2,cl
X ) is also QR-trivial. Hence, via the same arguments found in sec-

tion 5.4, we learn that QR acts as ψī∂/∂φī on the local operators in U . There-

fore, the QR-invariant operators of the local theory with action (6.13) take the form

F̂(φi, ∂zφ
i, . . . ; ∂zφ

ī, ∂2
zφī, . . . ;λi, ∂zλi, ∂

2
zλi, . . . ;λ

i
z, ∂zλ

i
z, ∂

2
zλi

z,

. . . ). Note also that the operators have to be ψī-independent on U (see arguments in sec-

tion 5.3), in addition to being φī-independent. Clearly, the operators, in their dependence

on the center of mass coordinate of the string whose worldsheet theory is the half-twisted

B-model, is holomorphic. Therefore, the QR-cohomology of operators in the chiral algebra

of the local half-twisted B-model with action (6.13), are local sections of the sheaf of chiral

algebras Â.

The local theory with action (6.13) has an underlying, holomorphic, twisted N = 2

superconformal structure as follows. Firstly, the action is invariant under the following

field transformations

δλi
z = λi

z, δλi = −λi, and δφī = λī, δλi
z = −∂zφ

i, (6.14)

where the corresponding conserved currents are given by the dimension one, bosonic and

fermionic operators Ĵ(z) and Q̂(z) respectively. They can be written as

Ĵ(z) = λk
zλk and Q̂(z) = −λk∂zφ

k. (6.15)

Note that we also have the relation [Q̂, Ĵ(z)] = Q̂(z), where Q̂ is the charge of the current

Q̂(z). Secondly, the conserved, holomorphic stress tensor is given by

T̂ (z) = −δij̄∂zφ
i∂zφ

j̄ − λk
z∂zλk, (6.16)

where one can derive another conserved, fermionic current Ĝ(z), such that T̂ (z) =

{Q̂, Ĝ(z)}, and

Ĝ(z) = δij̄λ
i
z∂zφ

j̄ . (6.17)

One can verify that Ĵ(z), Q̂(z), T̂ (z) and Ĝ(z) satisfy the same OPE relations as that

satisfied by J(z), Q(z), T (z) and G(z) in (6.10a)-(6.10e). In other words, they furnish

the same twisted N = 2 superconformal algebra satisfied by J(z), Q(z), T (z) and G(z) in

the global version of the classical half-twisted B-model with action S(2,2). In fact, Ĵ(z),

Q̂(z), T̂ (z) and Ĝ(z) are simply local versions of J(z), Q(z), T (z) and G(z) respectively.

Hence, if there is no obstruction to a global definition of Ĵ(z), Q̂(z), T̂ (z) and Ĝ(z) in the

quantum theory, the symmetries associated with J(z), Q(z), T (z) and G(z) will persist

in the non-linear half-twisted B-model at the quantum level. Another way to see this is

to first notice that J(z), Q(z), T (z) and G(z) are ψī-independent operators and as such,

– 51 –



J
H
E
P
0
7
(
2
0
0
7
)
0
1
3

will correspond to classes in H0(X, Â) (from our QR-Cech cohomology dictionary). Hence,

these operators will exist in the QR-cohomology if they correspond to global sections of Â.

We will determine the specific type of vertex algebra that Â represents shortly.

The free bc-βγ system. Let us now set βi = δij̄∂zφ
j̄ , γi = φi, λi

z = bi and λi = ci,

whereby βi and γi are bosonic operators of dimension (1, 0) and (0, 0), while bi and ci are

fermionic operators of dimension (1, 0) and (0, 0) respectively. Then, the QR-cohomology

of operators regular in U can be represented by arbitrary local functions of β, γ, b and c, of

the form F̂(γ, ∂zγ, ∂2
zγ, . . . , β, ∂zβ, ∂2

zβ, . . . , b, ∂zb, ∂
2
z b, . . . , c, ∂zc, ∂

2
z c, . . . ). The operators

β and γ have the operator products of a standard βγ system. The products β · β and γ · γ

are non-singular, while

βi(z)γj(z′) = −
δj
i

z − z′
+ regular. (6.18)

Similarly, the operators b and c have the operator products of a standard bc system. The

products b · b and c · c are non-singular, while

bi(z)cj(z
′) =

δi
j

z − z′
+ regular. (6.19)

These statements can be deduced from the flat action (6.13) by standard field theory

methods. We can write down an action for the fields β, γ, b and c, regarded as free

elementary fields, which reproduces these OPE’s. It is simply the action of the following

bc-βγ system:

Ibc-βγ =
1

2π

∫

Σ
|d2z|

∑

i

(
βi∂z̄γ

i + bi∂z̄ci

)
. (6.20)

Hence, we find that the linear (i.e. local) version of the bc-βγ system above reproduces the

QR-cohomology of ψī-independent operators of the half-twisted B-model on U , i.e., the

local sections of Â.

At this point, one can make an important observation about the conserved tensor

and current T̂ (z) and Ĝ(z) of the local half-twisted B-model with action (6.13), in the

context of the local version of the bc-βγ system above. Firstly, notice that the free bc-βγ

action (6.20) is invariant under the following supersymmetric field variations δbi = −∂zγ
i

and δβi = ∂zci, where the corresponding conserved, dimension one fermionic supercurrent

is given by Q(z) = ci∂zγ
i. The holomorphic stress tensor of the local bc-βγ system which

generates the symmetries of the system under arbitrary holomorphic reparameterisations

of the coordinates on Σ, is given by

T (z) = −βi∂zγ
i − bi∂zci. (6.21)

Note that we also have the relation {Q,G(z)} = T (z), where

G(z) = biβi (6.22)

is a conserved, dimension two fermionic current that is the worldsheet superpartner of T (z).

(Once again, we have omitted the normal-ordering symbol in writing the above conserved
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tensor and current for notational simplicity.) Via the respective identification of the fields

βi, γi, ck and bk with gij̄∂zφ
j̄ , φi, λk and λk

z , we find that T (z) and G(z) coincide with T̂ (z)

and Ĝ(z) respectively. This means that locally on X, the half-twisted B-model and the

bc-βγ system have the same generators of general holomorphic coordinate transformations

on the worldsheet. This observation will be important in section 7.1, when we consider an

explicit example.

The bc-βγ system above will certainly reproduce the QR-cohomology of ψī-independent

operators globally on X if its non-linear version is anomaly-free. In order to ascertain the

potential anomalies of the non-linear bc-βγ system, one must first make global sense of the

non-linear bc-βγ system with action (6.20). To this end, one must interpret γ as a map

γ : Σ → X, β as a (1, 0)-form on Σ with values in the pull-back γ∗(T ∗X), the fermionic

field c as a scalar on Σ with values in the pull-back γ∗(T ∗X), and the fermionic field b as

a (1, 0)-form on Σ with values in the pull-back γ∗(TX). Next, expand around a classical

solution of the non-linear bc-βγ system, represented by a holomorphic map γ0 : Σ → X,

and a section c0 of the pull-back γ∗
0(T ∗X). Setting γ = γ0 + γ′, and c = c0 + c′, the action,

expanded to quadratic order about this solution, is (1/2π)
[
(β,Dγ′) + (b,Dc′)

]
. γ′, being

a deformation of the coordinate γ0 on X, is a section of the pull-back γ∗
0(TX). Thus,

the kinetic operator of the β and γ fields is the D operator on sections of γ∗
0(TX); it is

the complex conjugate of the D operator of the kinetic term of the right-moving fermions

in S(2,2). Complex conjugation reverses the sign of the anomalies, but here the fields are

bosonic, while in S(2,2), they are fermionic; this gives a second sign change. Hence, the

anomalies due to the βγ kinetic operator are the same as those arising from the kinetic

operator acting on the right-moving fermions in the half-twisted B-model.26 Next, since c′

is a deformation of c0, it will be a section of the pull-back γ∗
0(T ∗X). The kinetic operator

of the b and c fields is therefore the D operator acting on sections of γ∗
0(T ∗X). Now,

introduce a spin structure on Σ, so that we can equivalently interpret D as the complex

conjugate of the Dirac operator acting on sections K−1/2 ⊗ γ∗
0(T ∗X). Using the same

argument found in section 4, we find that by tensoring K−1/2 with γ∗
0(T ∗X), one will get

an additional term 1
2c1(Σ)c1(T

∗X). However, since TX is a complex vector bundle, we

will have T ∗X = TX∨ ∼= TX, and because c1(TX) = −c1(TX), the additional term can

actually be written as −1
2c1(Σ)c1(TX). Moreover, we also have ch2(TX∨) = ch2(TX) =

ch2(TX). Thus, the anomalies due to the kinetic operator of the b and c fields, are the

same as those due to the D operator acting on the left-moving fermions in S(2,2). Hence,

the non-linear bc-βγ system has exactly the same anomalies as the underlying half-twisted

B-model - the anomaly cancellation condition is c1(Σ)c1(X) = 0. If the anomaly vanishes,

the bc-βγ system will reproduce the QR-cohomology of ψī-independent operators and their

OPE’s globally on X, i.e., one can find a global section of Â. In other words, for a general

Σ (where c1(Σ) 6= 0), one can find global sections of Â if only if c1(X) = 0. Else, on any

target space X with c1(X) 6= 0, one needs to work locally on Σ (such that one can choose

c1(Σ) = 0). This last observation will be important when we consider an explicit example

26Notice that the D operator in S(2,2) acts on sections of the pull-back of the anti-holomorphic bundle

TX instead of the holomorphic bundle TX. However, this difference is irrelevant with regard to anomalies

since ch2(E) = ch2(E) for any holomorphic vector bundle E.
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in section 7.1 where c1(X) 6= 0.

Locally on X, the QR-cohomology of the half-twisted B-model is non-vanishing only

for gR = 0. However, there can generically be cohomology in higher degrees globally on

X. Nevertheless, as explained in section 5.4, the QR-cohomology classes of positive degree

(i.e. gR > 0) can still be described in the framework of the free bc-βγ system via Cech

cohomology - the operators with degree gR > 0 can be represented as Cech-gR cocycles

that generate the gth
R Cech cohomology of the sheaf Â of the chiral algebra of the linear

(i.e. free) bc-βγ system (with action a linearised version of (6.20)).

As for the moduli of the theory, the complex structure is built into the definition of

the fields in (6.20). The moduli of the chiral algebra A, given by a class in H1(X,Ω2,cl
X ),

is built into the definition of Cech 1-cocycles that represent the admissible automorphisms

of the sheaves of free conformal fields theories (see section 5.6).

By specialising the arguments in section 5.4 to E = TX, we shall now discuss the

computation of a correlation function of cohomology classes of local operators within the

framework of the free bc-βγ system. As explained in section 5.4, due to a right-moving

ghost number anomaly, for generic correlation functions in perturbation theory to be non-

vanishing, it is a requirement that some of the local operators have positive degrees. Hence,

from our description above, the computation of the correlation functions will involve cup

products of Cech cohomology groups and their corresponding maps into complex numbers.

We can illustrate this scheme by computing a generic correlation function of dimension

(0, 0) operators on a genus-zero Riemann surface such as a sphere. To this end, recall from

section 6.1 that a dimension (0, 0) operator Oi with ghost number (gL, gR) = (−pi, qi) can

be interpreted as a (0, qi)-form with values in the holomorphic bundle ΛpiTX. Thus, it

represents a class in the Cech cohomology group Hqi(X,ΛpiTX). Note that due to the

additional left-moving ghost number anomaly, the correlation functions of our model must

also satisfy
∑

i pi =
∑

i qi = dimCX = n in perturbation theory, so as to be non-vanishing

on the sphere. Since the half twisted B-model must be restricted to holomorphic maps

via the fixed-point theorem and the BRST field transformations in (6.8), the correlation

function path integral will reduce to an integral over the moduli space of holomorphic maps.

Because we are considering degree-zero maps in perturbation theory, the moduli space of

holomorphic maps will be X itself, i.e., the path integral reduces to an integral over the

target space X. In summary, we find that a non-vanishing perturbative correlation function

involving s dimension (0, 0) operators O1, O2, . . . , Os on the sphere, can be computed as

〈O1(z1) . . .Os(zs)〉0 =

∫

X
Wn,n, (6.23)

where Wn,n is a top-degree form on X which represents a class in the Cech cohomology

group Hn(X,KX ). This (n, n)-form is obtained via the sequence of maps

Hq1(X,Λp1TX) ⊗ · · · ⊗ Hqs(X,ΛpsTX) → Hn(X,⊗s
i=1Λ

piTX) → Hn(X,KX ), (6.24)

where
∑s

i=1 qi =
∑s

i=1 pi = n. The first map is given by the cup product of Cech cohomol-

ogy classes which represent the corresponding dimension (0, 0) operators, while the second

map is given by a wedge product of exterior powers of the holomorphic cotangent bundle.
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The third map is due to the constraint relation ΛnTX ∼= KX . Similar procedures will

apply in the computation of correlation functions of local operators with higher dimension.

Note that in order to compute a non-perturbative correlation function of dimension

(0, 0) operators with (gL, gR) = (−pi, qi), the operators must instead be represented by Cech

cohomology classes Hqi(M,ΛpiTM) in the moduli space M of worldsheet instantons.27

An extension of this recipe to compute the non-perturbative correlation functions of local

operators of higher dimension, will therefore serve as the basis of a chiral version of quantum

cohomology.

The sheaf Ω̃ch
X of mirror chiral de Rham complex on X. In the case of the twisted

heterotic sigma model, where E 6= TX but is equivalent to some arbitrary holomorphic

vector bundle over X, we showed in section 5.5 that the relevant, free bc-βγ system with

action (5.19) will reproduce the vertex superalgebras spanned by chiral differential oper-

ators on the exterior algebra ΛẼ . One may then ask the following question: in the case

of the half-twisted B-model, what kind of vertex superalgebra does the free bc-βγ system

with action (6.20) reproduce? In other words, what kind of sheaf does Â mathematically

describe in the case of the half-twisted B-model?

In order to ascertain this, one must first and foremost determine the admissible au-

tomorphisms of the free bc-βγ system with action (6.20) (as was done for the E 6= TX

case in section 5.5). Since we are considering E = TX or equivalently, Ẽ = TX∨, the

components of the transition function matrix of the holomorphic vector bundle, given by

Aj
i in section 5.5, will now generate inverse holomorphic coordinate transformations on X.

In other words, we must make the following replacements in (5.23)–(5.26):

An
l =

∂γl

∂gn
, (6.25)

(∂kA−1)l
m =

∂2gm

∂γk∂γl
, (6.26)

Dk
i =

∂γk

∂gi
, (6.27)

where gi(γ) = γ̃i, and i, , k, l,m, n = 1, 2, . . . ,dimCX . As the obstruction to gluing of

sheaves ch2(TX) − ch2(Ẽ) vanishes for any X in the half-twisted B-model at the (2, 2)

locus, it will mean that from our discussion in section 5.5 on the local symmetries of

the associated free bc-βγ system, the extension of groups given by (5.30) will be trivial.

Thus, the universal cohomology group H2(H̃,Ω2,cl
eH

) which characterises the extension’s

non-triviality, will also vanish. As explained in section 5.5, this will mean that G̃ = H̃, i.e.,

the admissible automorphisms of the associated free bc-βγ system are solely generated by

H̃. Consequently, the last term on the r.h.s. of (5.24) can be set to zero in the present com-

putation. Hence, the admissible automorphisms of the free bc-βγ system which describes

27This means that the Cech cohomology classes in X of (6.24), will be replaced by Cech cohomology

classes in the moduli space of worldsheet instantons (See [16]).
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the half-twisted B-model locally on X will be given by:

γ̃i = gi(γ), (6.28)

β̃i =
∂γk

∂γ̃i
βk +

∂γk

∂γ̃l

∂

∂γ̃i

(
∂γ̃l

∂γj

)
bjck, (6.29)

c̃i =
∂γk

∂γ̃i
ck, (6.30)

b̃i =
∂γ̃i

∂γk
bk, (6.31)

where i, j, k, l = 1, 2, . . . ,dimCX. The field transformations for the b and c fields in (6.28)–

(6.31), are the inverse of the b and c field transformations in (3.17a)-(3.17d) of [3] which

define the admissible automorphisms of a sheaf of conformal vertex superalgebras math-

ematically known as the chiral de Rham complex. This means that (6.28)–(6.31) define

the admissible automorphisms of an isomorphic sheaf called the mirror chiral de Rham

complex [1]. Indeed, from the explicit definition of the sheaf of mirror chiral de Rham

complex in [1], as we have shown using purely physical arguments thus far, the b and c

fields must take values in the bundles γ∗(TX) and γ∗(TX∨) respectively. Hence, we learn

that Â is the sheaf of mirror chiral de Rham complex on X. We shall henceforth label the

sheaf of chiral algebras Â, associated with the half-twisted B-model on X, as the sheaf Ω̃ch
X

of mirror chiral de Rham complex on X, or mirror CDR for short. Thus, the chiral algebra

A of the half-twisted B-model is, as a vector space, given by
⊕

gR
HgR

Cech(X, Ω̃ch
X ).

6.3 The elliptic genus of the half-twisted B-model

Physically, the elliptic genus is a certain specialisation of the partition function of the half-

twisted B-model with worldsheet Σ being a torus with complex structure τ . It counts the

number of supersymmetric (BPS) states with L̄0 = 0 or rather, the right-moving ground

states. These are simply the states in the QR-cohomology of the half-twisted B-model.

(Recall that we discussed this in section 3.1.) The elliptic genus is also known to coincide

with the Euler characteristic of X. Consequently, it is a topological invariant of X, and it

can be written as a function of two variables y and q as [35, 36]

χ(X, y, q) = TrH(−1)F yJLqL0−
d
8 , (6.32)

where d = dimCX, q = e2πiτ and y = e2πiz, with z being a point in the torus Jacobian of

the line-bundle over Σ which the fermions of the theory are sections thereof. F = FL + FR

is the total fermion number, H is the Hilbert space obtained via quantising the loop space

LX, while TrH(−1)F is the Witten index that counts the difference between the number

of bosonic and fermionic states at each energy level n. The U(1) charge JL is actually

the left-moving ghost number gL. (We have renamed it here to allow (6.32) to takes its

standard form as found in the physics literature.)

Notice that the above discussion on the elliptic genus involves the states but not the

operators in the half-twisted B-model. When and how do the local operators come into the

picture? In order to associate the elliptic genus with the local operators in the chiral algebra
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of the sigma model, one has to consider the canonical quantisation of the sigma model on

an infinitely long cylinder R×S1. If c1(X) = 0, one can proceed to employ the CFT state-

operator isomorphism, from which one can then obtain a correspondence between the above

states and operators. The elliptic genus can thus be expressed in terms of the difference

between the number of bosonic and fermionic operators in the QR-cohomology, such that

the holomorphic (i.e. left-moving) dimension of the operators n, will now correspond to the

energy level n of the supersymmetric states that the operators are isomorphic to. Note

that if c1(X) 6= 0, the state-operator correspondence will not be an isomorphism. Rather,

the states just furnish a module V of the chiral algebra A of local operators, whereby V

is only isomorphic to A if c1(X) = 0. Based on the above correspondence, the description

of A in terms of the Cech cohomology of Ω̃ch
X , and the fact that bosonic and fermionic

operators have even and odd total ghost numbers gL + gR respectively, we find that in the

smooth Calabi-Yau case (i.e. c1(X) = 0), the elliptic genus in (6.32) can be written as

χB(X, q, y) = q−d/8
∑

gL,gR

∞∑

n=0

(−1)gL+gRdimHgR(X, Ω̃ch;gL

X;n )ygLqn, (6.33)

where Ω̃ch,gL

X,n is a sheaf of mirror CDR on X whose local sections correspond to the ψī-

independent QR-cohomology classes with dimension (n, 0) and left-moving ghost number

gL.

Mathematically, the elliptic genus can be understood as the S1-equivariant Hirzebruch

χy-genus of the loop space of X. Since we have assumed X to be Calabi-Yau in deriv-

ing (6.34), the elliptic genus χB(X, q, y) will have nice modular properties under SL(2, Z).

Notice also that χB(X, q, y) is Z≥0 × Z graded by the holomorphic dimension n and left-

moving ghost number gL of the QR-invariant operators, respectively. The grading by

dimension follows naturally from the scale invariance of the correlation functions and the

chiral algebra A of the half-twisted B-model. Note that χB(X, q, y) has no perturbative

quantum corrections.28 However, if c1(X) 6= 0, non-perturbative worldsheet instanton cor-

rections may violate the scale invariance of the correlation functions and hence, the grading

by dimension of the operators in A.29 Consequently, supersymmetry may be spontaneously

broken, thus rendering V empty, as all the bosonic and fermionic operators pair up.

6.4 Relation to the sheaf of CDR via mirror symmetry

Note that the elliptic genus is also a specialisation of the partition function of the untwisted

sigma model on a worldsheet Σ of genus one. Since the genus one partition functions of

a pair of mirror symmetric (2, 2) sigma models must be equivalent, it will then mean that

the elliptic genus of the half-twisted A-model on X̃ is the same as the elliptic genus of the

half-twisted B-model on X, where X and X̃ are a mirror pair of Calabi-Yau’s.

28Absence of quantum corrections can be inferred from the fact that both the energy and the (−1)F

operator that distinguishes the bosonic and fermionic states are exactly conserved quantum mechanically.
29In the non-perturbative small radius limit, if c1(X) 6= 0, the contribution from worldsheet instantons

(resulting from a pull-back of the (1, 1)-form ωT on holomorphic curves) will serve to renormalise ωT .

This gives rise to dimensional transmutation, whereby the exponential of ωT which appears in the non-

perturbative correlation functions, will be replaced by a dimensionful scale parameter Λ.
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From [15], we find that the elliptic genus of the half-twisted A-model on X̃ will be

given by

χA(X̃, q̃, ỹ) = q̃−d/8
∑

egL,egR

∞∑

m=0

(−1)egL+egRdimHegR(X̃, Ω̂ch;egL

eX;m
)ỹegL q̃m, (6.34)

where d = dimCX̃, and Ω̂ch;egL

eX;m
is a sheaf of CDR on X̃ whose local sections correspond

to the ψī-independent QR-cohomology classes of the half-twisted A-model with dimension

(m, 0) and left-moving ghost number g̃L.

Note that between the half-twisted A and B models, there is a sign difference in the

left-moving ghost number current J(z) - in making the substitution J(z) → −J(z) in the

OPE algebra of (6.10a)-(6.11e), one will get the OPE algebra of the half-twisted A-model

defined in (6.10a)-(6.10e) of [15]. On the other hand, the right-moving ghost number

current is the same for both models, and its charge on a local operator counts the number

of ψī fields it contains, where this number must be less than or equal to d because of the

Grassmannian nature of the ψī fields. In addition, note that q̃ = e2πiτ̃ is arbitrary, where τ̃

is the complex structure of the genus one wordsheet of the half-twisted A-model. However,

in equating the underlying, untwisted (2, 2) sigma models on mirror Calabi-Yau pairs, one

necessarily works with equivalent worldsheets on both sides of the duality, i.e., τ = τ̃ .

Hence, in equating χA and χB under mirror symmetry, one can set q = q̃. Lastly, notice

that the worldsheet fermions of the A and B models are sections of different line bundles

over Σ. This is due to the inequivalent twists of the A and B models. Thus, y 6= ỹ. In

summary, we find that

∑

egL

d∑

k≥0

(−1)k+egLdimHk(X̃, Ω̂ch;egL

eX;w
)ỹegL =

∑

gL

d∑

l≥0

(−1)l+gLdimH l(X, Ω̃ch;gL

X;w )ygL (6.35)

for any w ≥ 0.

Hence, via (6.35), we have an expression which relates the sheaf cohomology of the

CDR on X̃ , to the sheaf cohomology of the mirror CDR on X, the Calabi-Yau mirror of

X̃ . It would certainly be interesting to prove (6.35) from a purely mathematical point of

view.

7. Examples of sheaves of mirror CDR

In this section, we study in detail, examples of sheaves of mirror CDR and their coho-

mologies on two different smooth manifolds. Our main objective is to illustrate the rather

abstract discussion in section 6. In the process, we will again obtain an interesting and

novel understanding of the relevant physics in terms of pure mathematical data.

7.1 The sheaf of mirror CDR on CP1

For our first example, following [15], we take X = CP1. In other words, we will be

exploring and analysing the chiral algebra A of operators in the half-twisted B-model on

– 58 –



J
H
E
P
0
7
(
2
0
0
7
)
0
1
3

CP1. Before we proceed further, recall from our earlier discussion that there is a B-model

anomaly quantified by c1(Σ)c1(X). Since c1(CP1) 6= 0, one cannot consistently define the

theory on CP1 unless c1(Σ) = 0. This can be achieved either by working on a flat Σ, or by

working locally on a general, possibly curved Σ. Since our main interest will be the OPE

algebras that the various operators satisfy, we shall work locally on a general Σ, choosing

a local complex parameter z.

As mentioned, CP1 can be regarded as the complex γ-plane plus a point at infinity.

Thus, we can cover it by two open sets, U1 and U2, where U1 is the complex γ-plane, and

U2 is the complex γ̃-plane, where γ̃ = 1/γ.

Since U1 is isomorphic to C, the sheaf of mirror CDR in U1 can be described by a

single free bc-βγ system with action

I =
1

2π

∫
|d2z| β∂z̄γ + b∂z̄c. (7.1)

Here β, b, and c, γ, are fields of dimension (1, 0) and (0, 0) respectively. They obey

the usual free-field OPE’s; there are no singularities in the operator products β(z) · β(z′),

b(z) · b(z′), γ(z) · γ(z′) and c(z) · c(z′), while

β(z)γ(z′) ∼ −
1

z − z′
and b(z)c(z′) ∼

1

z − z′
. (7.2)

Similarly, the sheaf of mirror CDR in U2 is described by a single free b̃c̃-β̃γ̃ system

with action

I =
1

2π

∫
|d2z| β̃∂z̄ γ̃ + b̃∂z̄ c̃, (7.3)

where the fields β̃, b̃, γ̃ and c̃ obey the same OPE’s as β, b, γ and c. In other words, the

non-trivial OPE’s are given by

β̃(z)γ̃(z′) ∼ −
1

z − z′
and b̃(z)c̃(z′) ∼

1

z − z′
. (7.4)

In order to describe a globally-defined sheaf of mirror CDR, one will need to glue the

free conformal field theories with actions (7.1) and (7.3) in the overlap region U1∩U2. To do

so, one must use the admissible automorphisms of the free conformal field theories defined

in (6.28)–(6.31) to glue the free-fields together. In the case of X = CP1, the automorphisms

will be given by

γ̃ =
1

γ
, (7.5)

β̃ = −γ2β + 2γbc, (7.6)

c̃ = −γ2c, (7.7)

b̃ = −
b

γ2
. (7.8)

As there is no obstruction to this gluing in the half-twisted B-model, a sheaf of mirror CDR

can be globally-defined on the target space CP1 (but only locally-defined on the worldsheet

Σ of the conformal field theory, because we are using a local complex parameter z in the

above).
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Global sections of the sheaf Recall that for a general manifold X of complex di-

mension n, the chiral algebra A will be given by A =
⊕gR=n

gR=0 HgR(X, Ω̃ch
X ) as a vector

space. Since CP1 has complex dimension 1, we will have, for X = CP1, the relation

A =
⊕gR=1

gR=0 HgR(CP1, Ω̃ch
P1). Thus, in order to understand the chiral algebra of the half-

twisted B-model, one needs only to study the global sections of the sheaf Ω̃ch
P1, and its first

Cech cohomology H1(CP1, Ω̃ch
P1).

First, let us consider H0(CP1, Ω̃ch
P1), the global sections of Ω̃ch

P1. At dimension 0, the

space of global sections H0(CP1, Ω̃ch;∗
P1;0

) must be spanned by functions of γ and/or c only.

Note that it can be a function of higher degree in γ, but only a function of single degree

in c - higher powers of c vanish (since c2 = 0) because it is fermionic. In other words, the

global sections are given by H0(CP1, Ω̃ch;gL

P1;0
), where gL = 0 or −1. Notice that Ω̃ch;0

P1;0
is

just the sheaf O of holomorphic functions in γ on CP1, and that classically (from ordinary

algebraic geometry), we have the result H1(CP1,O) = 0. Since a vanishing cohomology in

the classical theory continues to vanish in the quantum theory, H1(CP1, Ω̃ch;0
P1;0

) = 0 will hold

in quantum perturbation theory. As a relevant digression, notice that from chiral Poincaré

duality [38],30 we have the relation H0(CP1, Ω̃ch;1
P1;0

)∗ = H1(CP1, Ω̃ch;0
P1;0

). This means that

H0(CP1, Ω̃ch;1
P1;0

) = 0, or rather, the global sections at dimension 0 do not contain fields with

gL = 1; since the only field that has gL = 1 is the b field with dimension 1, this observation

is consistent. On the other hand, there is no such restriction on polynomials with gL = −1

to span the space of global sections at dimension 0. In fact, from the automorphism relation

of (7.7), we find an immediate example, since its l.h.s. , given by c̃, is by definition regular

in U2, while the r.h.s. , being polynomial in γ and c, is manifestly regular in U1. Their

being equal means that they represent a dimension 0 global section of Ω̃ch
P1 that we will call

j+:

j+ = −γ2c = c̃. (7.9)

The construction is completely symmetric between U1 and U2, with γ ↔ γ̃ and c ↔ c̃, so

a reciprocal formula gives another dimension 0 global section j−:

j− = c = −γ̃2c̃. (7.10)

(Note that normal-ordering is understood for all operators above and below). Since these

are global sections of a sheaf of chiral vertex operators, we can construct more of them

from their OPE’s. However, there are no singularities in the ja · jb operator products for

a, b = + or −, and as such, we cannot construct any more global sections from their OPE’s

with each other. Nevertheless, we will be able to find another dimension 0 global section

j3, when we discuss the dimension 1 global sections and their OPE’s with j+ and j−.

Note that in contrast to the half-twisted A-model on CP1 of [15], where we discussed

the chiral algebra of local operators corresponding to global sections of the sheaf of CDR

at dimension 0, the space of global sections of the sheaf of mirror CDR corresponding to

30Note that the chiral Poincaré duality was originally formulated in the context of the sheaf of CDR.

However, since the sheaf of mirror CDR is isomorphic to the sheaf of CDR, the duality principle should

apply in the case of the mirror sheaf as well. The author wishes to thank F. Malikov for verifying this point.
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the chiral algebra of local operators in the half-twisted B-model at dimension 0, is not

one-dimensional and generated by 1. Instead, we can have global sections j+, j−, 1 etc.31

Let us now ascertain the space H0(CP1, Ω̃ch;∗
P1;1

) of global sections of dimension 1. In

order to get a global section of Ω̃ch
P1 of dimension 1, we can act on a global section of Ω̃ch

P1 of

dimension 0 with the partial derivative ∂z. Since ∂z1 = 0, this prescription will not apply

to the operator 1. One could also consider operators of the form f(γ)∂zγ, where f(γ)

is a holomorphic function of γ. However, there are no such global sections either - such

an operator, by virtue of the way it transforms purely geometrically under (7.5), would

correspond to a section of Ω1(CP1), the sheaf of holomorphic differential forms f(γ)dγ on

CP1, and from the classical result H0(CP1,Ω1(CP1)) = 0, which continues to hold in the

quantum theory, we see that f(γ)∂zγ cannot be a dimension 1 global section of Ω̃ch
P1.

Other possibilities include operators which are linear in b, ∂zc or β. In fact, from

the automorphism relation of (7.6), we find an immediate example as the l.h.s. , β̃, is by

definition regular in U2, while the r.h.s. , being polynomial in γ, b and c, is manifestly

regular in U1. Their being equal means that they represent a dimension 1 global section of

Ω̃ch
P1 that we will call J+:

J+ = −γ2β + 2γbc = β̃. (7.11)

The construction is completely symmetric between U1 and U2, with γ ↔ γ̃, β ↔ β̃, b ↔ b̃

and c ↔ c̃, so a reciprocal formula gives another dimension 1 global section J−:

J− = β = −γ̃2β̃ + 2γ̃b̃c̃. (7.12)

Hence, J+ and J− give us two dimension 1 global sections of the sheaf Ω̃ch
P1. Since these are

global sections of a sheaf of chiral vertex operators, we can construct more of them from

their OPE’s. There are no singularities in the J+ · J+ or J− · J− operator products, but

J+J− ∼
2J3

z − z′
, (7.13)

where J3 is another global section of dimension 1 given by

J3 = −γβ + bc. (7.14)

What about the other dimension 0 global section that we mentioned earlier? Well, note

that we also have the OPE

J+j− ∼
2j3

z − z′
, (7.15)

where j3 is the global section of dimension 0 that we are looking for. It is given by

j3 = −γc. (7.16)

Notice that {J+, J−, J3} are bosonic operators that belong in H0(CP1, Ω̃ch;0
P1;1

), while

{j+, j−, j3} are fermionic operators that belong in H0(CP1, Ω̃ch;−1
P1;0

). (Again, this is in

31Note that the operator 1 generates the one-dimensional class of H0(CP1, eΩch;0

P1 ;0
). This is because eΩch;0

P1;0

corresponds to the sheaf O of holomorphic functions in γ on CP1, and H0(CP1,O) ∼= C.
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contrast to the A-model/sheaf of CDR case considered in [15], whereby the counterparts of

the fermionic global sections {j+, j−, j3} are of dimension 1.) One can compute that they

satisfy the following closed OPE algebra:

Ja(z)Ja(z
′) ∼ regular, J3(z)J+(z′) ∼

+J+(z′)

z − z′
, (7.17)

J3(z)J−(z′) ∼
−J−(z′)

z − z′
, J+(z)J−(z′) ∼

2J3(z
′)

z − z′
, (7.18)

J3(z)j−(z′) ∼
−j−(z′)

z − z′
, J3(z)j+(z′) ∼

+j+(z′)

z − z′
, (7.19)

J+(z)j−(z′) ∼
2j3(z

′)

z − z′
, J+(z)j3(z

′) ∼
−j+(z′)

z − z′
, (7.20)

J−(z)j+(z′) ∼
−2j3(z

′)

z − z′
, J−(z)j3(z

′) ∼
j−(z′)

z − z′
, (7.21)

ja(z)jb(z
′) ∼ regular, Ja(z)ja(z

′) ∼ regular, (7.22)

where a, b = +,− or 3. From the above OPE algebra, we learn that the J ’s and j’s together

generate a super-affine algebra of SL(2) at level 0, which here, appears in the Wakimoto

free-field representation [39]. Indeed, these chiral vertex operators are holomorphic in z,

which means that one can expand them in a Laurent series that allows an affinisation of

the SL(2) superalgebra generated by their resulting zero modes. Thus, the space of global

sections of Ω̃ch
P1 is a module for the super-affine algebra of SL(2) at level 0. (Given that the

sheaf Ω̃ch
X is supposed to be isomorphic to the sheaf Ω̂ch

X , this observation should not come

as a surprise, since as shown in [15], the space of global sections of Ω̂ch
P1 is also a module

for a super-affine algebra of SL(2) at level 0.)

It is shown in [40] that for a general representation of a super-affine algebra of SL(2)

at level k, one can write its (bosonic) current generators as

Ja(z) = Jf
a (z) + Ĵa(z). (7.23)

The current Jf
a (z), constructed from Majorana-Weyl free fermions, defines a representation

of the super-affine algebra of SL(2) at level 2, while the current Ĵa(z) defines a represen-

tation at level k − 2. The current Ĵa(z) may be thought as that of a WZW theory, and it

obeys Ĵa(z)Jf
a (z) ∼ reg. A stress tensor can then be defined as [40]

T (z) =
: Ĵ+Ĵ− + Ĵ2

3 : − : (j+∂zj+ + j−∂zj− + j3∂zj3) :

k
. (7.24)

For every k 6= 0, T (z) generates a (super)-Virasoro algebra. Similarly, one can define its

superpartner current

G(z) =
k : (j+Ĵ− + j3Ĵ3) : −( i

6 )fabc : jajbjc :

k2
. (7.25)

However, notice that the above definitions of T (z) and G(z) break down for k = 0. This

implies that T (z) and G(z) do not exist as physical operators in the half-twisted B-model

on CP1. Consequently, the space of local operators has a structure of a chiral algebra only
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in a partial physical sense; it obeys all the physical axioms of a chiral algebra, except for

reparameterisation invariance on the z-plane or worldsheet Σ. We will substantiate this

last statement momentarily by demonstrating an absence of the holomorphic stress tensor

(and its superpartner) in the QR-cohomology.

Notice that in order to obtain operators that make sense at k = 0, we can remove the

factors of 1/k and 1/k2 from (7.24) and (7.25), and in doing so, we get

S(z) = : Ĵ+Ĵ− + Ĵ2
3 : − : (j+∂zj+ + j−∂zj− + j3∂zj3) : (7.26)

and

R(z) = k : (j+Ĵ− + j3Ĵ3) : −

(
i

6

)
fabc : jajbjc :, (7.27)

where S(z) = kT (z) and R(z) = k2G(z) are well-defined operators for any k 6= ∞. Hence,

we see that S(z) generates k times the symmetry generated by T (z), and R(z) generates k2

times the symmetry generated by G(z). For k = 0, S(z) and G(z) generate no symmetries

at all - the OPE’s of all fields with S(z) and G(z) are regular. Thus, in an irreducible

representation of the super-affine algebra, S(z) and G(z) can be represented by c-numbers,

and might vanish.

One can actually go on to say more about S(z) as follows. First, note that T (z) in (7.24)

will generate a (super)-Virasoro algebra with central charge ck = 3(k − 2)/k + 3/2 [40].

Second, note that since S(z) = kT (z), under a finite conformal transformation z → w(z),

we will have

(∂zw)2S′(w) = S(z) − k

(
ck

12

)
S(w, z), (7.28)

where S′(w) is the transformed operator, and

S(w, z) =
2(∂zw)(∂3

z w) − 3(∂2
z w)3

2(∂zw)2
(7.29)

is the Schwarzian derivative. Thus, for k = 0, we have the transformation

S(z) = (∂zw)2S′(w) −
1

2
S(w, z). (7.30)

Third, note that (7.30) coincides with the transformation formula for self-adjoint differ-

ential operators acting from K−1/2 to K3/2, where K is the canonical line bundle on Σ.

Consequently, the S(z) operator is a projective connection on Σ [41]. Projective connec-

tions are important in the conformal field-theoretic approach to the geometric Langlands

program as reviewed in [41]. However, the relevant projective connections in that context

were related to affine instead of super-affine Lie algebras. Hence, S(z) may potentially

find its place in a conformal field-theoretic approach to a supersymmetric extension of the

geometric Langlands conjecture, if the extension should exist at all.

Still on the subject of global sections, recall from sections 6.1 and 6.2, and our QR-

Cech cohomology dictionary, that there will be ψī-independent operators T (z) and G(z)

in the QR-cohomology of the underlying half-twisted B-model on CP1 if and only if the

corresponding T̂ (z) and Ĝ(z) operators can be globally-defined, i.e., the T (z) and G(z)
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operators of the free bc-βγ system belong in H0(CP1, Ω̃ch
P1) - the space of global sections of

Ω̃ch
P1. Let’s look at this more closely.

Note that for X = CP1, we have

T (z) = − : β∂zγ : (z)− : b∂zc : (z), (7.31)

G(z) = : bβ : (z), (7.32)

where the above operators are defined and regular in U1. Similarly, we also have

T̃ (z) = − : β̃∂z γ̃ : (z)− : b̃∂z c̃ : (z), (7.33)

G̃(z) = : b̃β̃ : (z), (7.34)

where the above operators are defined and regular in U2. By substituting the automorphism

relations (7.5)–(7.8) into (7.33)–(7.34), a small computation shows that in U1 ∩ U2,

T̃ (z) − T (z) = 4

(
∂zγ

γ

)2

(z), (7.35)

G̃(z) − G(z) = 2∂z

(
b

γ

)
(z), (7.36)

where an operator that is a global section of Ω̃ch
P1 must agree in U1 ∩ U2.

Notice that in U1∩U2, we have T̃ 6= T and G̃ 6= G. The only way to consistently modify

T and T̃ so as to agree on U1 ∩U2, is to shift them by a multiple of the term (∂zγ)2/γ2 =

−(∂z γ̃)2/γ̃
2
. However, this term has a double pole at both γ = 0 and γ̃ = 0. Thus, it

cannot be used to redefine T or T̃ (which has to be regular in U1 or U2, respectively).

The only way to consistently modify G and G̃ so as to agree on U1 ∩ U2, is to shift them

by a linear combination of the terms (∂zb)/γ = −γ̃∂z(b̃/γ̃
2), and (b∂zγ)/γ2 = (b̃∂z γ̃)/γ̃2.

Similarly, these terms have poles at both γ = 0 and γ̃ = 0, and hence, cannot be used to

redefine G or G̃ (which also has to be regular in U1 or U2 respectively).

Therefore, we conclude that T (z) and G(z) do not belong in H0(CP1, Ω̂ch
P1). Since

c1(CP1) 6= 0, this conclusion is consistent with the conformal anomaly cancellation condi-

tion discussed in section 5.7, where for E = TX at the (2, 2) locus, tells us that T (z) 6= T̃ (z)

unless c1(X) = 0. Again from our QR-Cech cohomology dictionary, this means that T (z)

and G(z) are not in the QR-cohomology of the underlying half-twisted B-model on CP1.

This last statement is in perfect agreement with the physical picture presented in section

6.1, which tells us that since c1(CP1) 6= 0, the symmetries associated with T (z) and G(z)

ought to be broken such that T (z) and G(z) will cease to exist in the QR-cohomology at

the quantum level. Notice then that (7.35) and (7.36) actually provide us with a purely

mathematical interpretation of the absence of the stress tensor T (z) and its superpartner

G(z), as an obstruction to gluing the T (z)’s and the G(z)’s (on overlaps) into global sec-

tions of the sheaf Ω̃ch
P1 of mirror CDR on CP1. Last but not least, our findings also imply

that unlike the sheaf Ω̂ch
X of CDR on X, the sheaf Ω̃ch

X of mirror CDR on X will only have

a structure of a conformal vertex superalgebra if c1(X) = 0.

As mentioned in section 6.1, the symmetries associated with the stress tensor T (z)

and its superpartner Q(z) will remain unbroken in the conformal limit where c1(X) = 0,
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i.e., if the sigma model one-loop beta function vanishes. Thus, one is led to the following

question: is the non-vanishing of the obstruction terms on the r.h.s. of (7.35) and (7.36) due

to a non-zero one-loop beta function? And will they vanish if the one-loop beta function

is zero?

In order to answer this question, first recall from the CP1 example in section 5.7 that

we have a correspondence between the holomorphic term (∂zγ)/γ and the sigma model

operator Rij̄∂zφ
iψj̄ . Hence, since Rij̄ is proportional to the one-loop beta function, we find

that the r.h.s. of (7.35) will be zero if the one-loop beta function vanishes. Consequently,

T (z) will be a global section of Ω̃ch
P1 and T (z) will hence be in the QR-cohomology of the

half-twisted B-model on CP1, if and only if the one-loop beta function vanishes.

What about G(z) and G(z)? Firstly, the identification γi = φi further implies a

correspondence between the term 1/γ and the sigma model operator Rij̄ψ
j̄ . Secondly,

notice that the r.h.s. of (7.36) is given by 2[(∂zb)/γ − (b∂zγ)/γ2]. Thus, via the above-

mentioned correspondence between the holomorphic terms and operators, the identification

bi = λi
z, and the fact that ∂γ(1/γ) = −1/γ2, we find that the physical counterpart of the

r.h.s. of (7.36) will be given by the sigma model operator 2[Rij̄∂zλ
i
zψ

j̄ + Rij̄,kλ
k
z∂zφ

iψj̄ ].

Therefore, we see that the r.h.s. of (7.36) is proportional to the one-loop beta function.

Consequently, G(z) will be a global section of Ω̃ch
P1 and G(z) will hence be in the QR-

cohomology of the half-twisted B-model on CP1, if and only if the one-loop beta function

vanishes.

From our above discussion, we have once again obtained an interpretation of the one-

loop beta function solely in terms of holomorphic data.

The first cohomology. We shall now proceed to investigate the first cohomology group

H1(CP1, Ω̃ch
P1).

In dimension 0, we again have, as possible candidates, functions that are of a higher

degree in γ but of a single degree in c. However, from ordinary algebraic geometry, we have

the classical result that H1(CP1,O) = 0, where O is the sheaf of functions over CP1 which

are holomorphic in γ. Since a vanishing cohomology at the classical level continues to

vanish at the quantum level, we learn that we cannot have functions which are monomials

in γ.

That leaves us to consider polynomials of the form f(γ)c or the monomial c. In

order to determine if they span the first cohomology, first notice that the polynomials of

the form f(γ)c or the monomial c, are simply sections of the sheaf Ω̃ch;−1
P1;0

. From chiral

Poincaré duality [38], we have the relation H0(CP1, Ω̃ch;p
P1;n

)∗ = H1(CP1, Ω̃ch;1−p
P1;n

). Hence,

H0(CP1, Ω̃ch;2
P1;0

)∗ = H1(CP1, Ω̃ch;−1
P1;0

). Since one can certainly find global sections of the

sheaf Ω̃ch;2
P1;0

, H1(CP1, Ω̃ch;−1
P1;0

) will be non-zero. Now, let us recall that c is a local section of

the pull-back of the holomorphic cotangent bundle of CP1, i.e., c ∈ O(γ∗(T ∗P1)). Hence,

polynomials of the form f(γ)c are sections of the sheaf O ⊗ O(γ∗(T ∗P1)). Note that

since H1(CP1,O) = 0, and H0(CP1,O) is generated by 1, we effectively have the map

H1(CP1,O(γ∗(T ∗P1))) → H1(CP1,O⊗O(γ∗(T ∗P1))).32 Therefore, we find that just as in

32From the cup product map, we have [H0(CP1,O) ⊗ H1(CP1,O(γ∗(T ∗P1)))] ⊕ [H1(CP1,O) ⊗
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the case of the A-model/sheaf of CDR on CP1, the first cohomology group at dimension 0

or H1(CP1, Ω̃ch;∗
P1;0

), is one-dimensional and generated by c.

In dimension 1, we will need to consider functions which are linear in β, b, ∂zγ or ∂zc.

One clue that we have is the standard result from algebraic geometry that H1(CP1,K) 6= 0,

where K is the sheaf of holomorphic differentials dγ/γ. This implies that ∂zγ/γ ought to

generate a dimension 1 class of the cohomology group H1(CP1, Ω̃ch
P1). However, this classical

result may be violated by quantum effects in perturbation theory. How so, one may ask?

To understand this, let us first consider the operator J (z) = : bc : (z) on an open set

U1. From the fields correspondence between the free bc-βγ system and the local half-twisted

B-model in section 6.2, we find that J (z) just corresponds to Ĵ(z), the left-moving ghost

number current of the local half-twisted B-model on U1. Next, let J̃ (z) =: b̃c̃ : (z) define

the same operator on another open set U2. By using the automorphism relations (7.5)–

(7.8), one can compute that on U1 ∩ U2,

J̃ (z) − J (z) = 2

(
∂zγ

γ

)
(z). (7.37)

Note that one could attempt to make J̃ (z) and J (z) agree on U1 ∩ U2 by removing the

term on the r.h.s. of (7.37). The only way to do this consistently (such that the symmetries

on both sides of (7.37) continue to be respected) is to add to J (z) a term that is linear

in ∂zγ/γ, or to add to J̃ (z) a term that is linear in −∂zγ̃/γ̃. However, note that these

two terms have a pole at γ = 0 and γ̃ = 0 respectively, and since J̃ (z) and J (z) are

defined to be regular in U2 and U1, we cannot use these terms to modify J̃ (z) and J (z).

This means that the r.h.s. of (7.37) cannot be set to zero, and that J (z) will fail to be

a global section of the sheaf of mirror CDR, i.e., J (z) /∈ H0(CP1, Ω̃ch
P1). Therefore, from

our QR-Cech cohomology dictionary, this translates to the fact that J(z) of the underlying

half-twisted sigma model on CP1 is absent in the QR-cohomology. As explained in section

6.1, this is due to the quantum perturbative effects of a non-zero one-loop beta function

arising from a non-vanishing first Chern class on CP1. Now, since J̃ and J are by definition

holomorphic in U2 and U1 respectively, it will mean from (7.37) that ∂zγ/γ cannot be a

dimension 1 element of the group H1(CP1, Ω̃ch
P1). This is because it can be written as a

difference between a term that is holomorphic in U2 and a term that is holomorphic in

U1. It is in this collective sense that we understand the following - although H1(CP1,K) is

non-vanishing classically, ∂zγ/γ /∈ H1(CP1, Ω̃ch;0
P1;1

) due to quantum effects in perturbation

theory. One can go on to consider other classical, dimension 1 operators using standard

results in ordinary algebraic geometry, where the existence of such operators at the quantum

level can be checked against conditions analogous to (7.37) that one might have. We shall

omit the computation of these operators for brevity.

Another important point to note is that from chiral Poincaré duality, we have the re-

lations H0(CP1, Ω̃ch;0
P1;1

)∗ = H1(CP1, Ω̃ch;1
P1;1

), and H0(CP1, Ω̃ch;−1
P1;0

)∗ = H1(CP1, Ω̃ch;2
P1;0

). Since

{J+, J−, J3} ∈ H0(CP1, Ω̃ch;0
P1;1

), and {j+, j−, j3} ∈ H0(CP1, Ω̃ch;−1
P1;0

), we find that the space

H0(CP1,O(γ∗(T ∗P1)))] → H1(CP1,O ⊗ O(γ∗(T ∗P1))). Since H1(CP1,O) = 0, and H0(CP1,O) is gen-

erated by 1, we effectively have the map H1(CP1,O(γ∗(T ∗P1))) → H1(CP1,O ⊗O(γ∗(T ∗P1))).
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H1(CP1, Ω̃ch
P1) is also a module for a super-affine algebra of SL(2) at level 0. This observation

is consistent with the fact that the sheaf of mirror CDR is isomorphic to the sheaf of CDR.

To ascertain the operators of dimension 2, we can follow the same prescription em-

ployed in ascertaining the operators of dimension 0 and 1 - we could start off by first using

the results from standard algebraic geometry to ascertain, at the classical level, the rele-

vant operators of dimension 2 in the first cohomology, and then proceed to check for their

existence at the quantum level by comparing against conditions analogous to (7.37) that

one might have. In light of this prescription, note however that from the conditions (7.35)

and (7.36), one can infer that (∂zγ/γ)2 /∈ H1(CP1, Ω̃ch;0
P1;2

), and ∂z(b/γ) /∈ H1(CP1, Ω̃ch;1
P1;2

),

regardless of the results from algebraic geometry of the first cohomology on CP1 at dimen-

sion 2. For brevity, we shall omit the computation of these operators.

We can do likewise to ascertain the operators of dimension 3 and higher. But in

these higher dimensional cases, we do not have relations that are analogous to (7.37) in

dimension 1, and (7.35)–(7.36) in dimension 2. Thus, we could very well borrow the results

from standard algebraic geometry to ascertain the relevant operators of dimension 3 and

higher in the first cohomology. In view of the length of this paper, we will again omit the

computation of these operators for brevity.

7.2 The half-twisted B-Model on S3 × S1

As shown in section 3.3 of [15], a twisted version of the usual (0, 2) heterotic sigma model

can be related to a unitary model with (0, 2) supersymmetry. Likewise on the (2, 2) locus,

a half-twisted (2, 2) model (such as our half-twisted B-model) can be related to a unitary

model with (2, 2) supersymmetry. Thus, if we are to allow for the possibility of constructing

a family of sheaves of mirror CDR on the target space X, X should be non-Kähler with

torsion, just as in the (0, 2) case.33

It is commonly known that a (2, 2) model formulated using only chiral superfields does

not admit non-Kähler target spaces [42]. However, if the model is being formulated in

terms of chiral and twisted chiral superfields, one can allow for non-Kähler target spaces

with torsion [43]. An example of a non-Kähler complex manifold that exists as the target

space of a (2, 2) sigma model is X = S3 × S1. In fact, an off-shell construction of this

model has been given in [24], where it is also shown that for a (2, 2) sigma model on

a group manifold, the only example amenable to such a formulation is the parallelised

group manifold X = SU(2) × U(1) ∼= S3 × S1. The essential properties of S3 × S1 have

been discussed in section 3.4, where the hermitian form ωT which defines its torsion whilst

obeying the weaker condition ∂∂̄ωT = 0, has been given in (3.12). Let us therefore explore

this model further.

The WZW model. As explained in [24, 25], the (2, 2) model on S3×S1 is a tensor prod-

uct of an SU(2) WZW model, times a free field theory on S1, times four free left and right-

moving real fermions. The real fermions combine into four complex fermions which trans-

form in the adjoint representation of SU(2)×U(1), i.e., 3 of SU(2) and 1 of U(1). The SU(2)

33Recall from our discussion in section 3.3 that the non-Kählerity and torsion of the target space are

required to define the moduli of the sheaves of CDO’s.

– 67 –



J
H
E
P
0
7
(
2
0
0
7
)
0
1
3

fermions are free because the connection on SU(2), which follows from the (2, 2) model on

S3×S1, has torsion and is parallelised. There is thus a shift in the level of the SU(2) WZW

model due to a relevant redefinition of these fermionic fields. This will be apparent shortly.

On the (2,2) locus, the free left-moving fermions are equivalent to a set of fermionic

bc fields (labelled by λi and λi
z in section 6.1) with spins 0 and 1, while the free right-

moving fermions are equivalent to a set of b̃c̃ fields (labelled by ψi
z̄ and ψī in section 6.1)

with spins 1 and 0. The bc and b̃c̃ systems have left and right central charges (−2, 0) and

(0,−2). On a manifold such as S3 × S1 with complex dimension 2, there will be 2 sets of

left and right-moving fermions. Hence, the fermions contribute a total of (−4,−4) to the

left and right central charges of the model. The SU(2) WZW model at level k contributes

(3k/(k +2), 3k/(k +2)) to the central charges, and the free theory on S1 contributes (1, 1).

The total left and right central charges are therefore (3k/(k + 2)− 3, 3k/(k + 2)− 3). The

difference between the left and right central charges remains the same in passing from the

physical theory to the QR-cohomology. In this example, it is given by c = 0. This should

be the central charge of the stress tensor which will appear as a global section of the sheaf

Ω̃ch
X of mirror CDR on X = S3 × S1.

Similarly, we can pre-ascertain the central charges of the current algebra which will be

furnished by the appropriate global sections of the sheaf of mirror CDR on S3 × S1. The

underlying SU(2) WZW model has an SU(2)-valued field g, with symmetry SU(2)L×SU(2)R
(to be precise, it is (SU(2)L × SU(2)R)/Z2, where Z2 is the common center of the two

factors). The symmetry acts by g → agb−1, a, b ∈ SU(2). In the WZW model, the SU(2)L
symmetry is part of a holomorphic SU(2) current algebra of level k + 2, while SU(2)R is

part of an antiholomorphic SU(2) current algebra of level k + 2. As mentioned earlier, the

shift by “2” in the level of the SU(2) current algebra is expected, and it is due to the fact

that the complex fermions transform freely in the adjoint representation of SU(2). The left

and right central charges are therefore (k + 2, 0) for SU(2)L and (0, k + 2) for SU(2)R.

Next, notice that the (right-moving) supersymmetry generator QR = Q+, although

invariant under a left-moving U(1) current, is nevertheless charged under a right-moving

one. (Recall from section 2.2 that Q+ has charge (qL, qR) = (0,+1).) Hence, the physical

characteristics of QR, and the symmetry of the QR-cohomology that it defines, will depend

on the twist one makes on the right-moving fields. Since the twisting of the four real right-

moving fermions of the underlying (2, 2) model on S3 × S1 reduces the SU(2)R symmetry

to its maximal torus U(1)R, the symmetry that should survive at the level of the QR-

cohomology or sheaf of mirror CDR is (SU(2)L × U(1)R)/Z2 = U(2).

The difference between the left and right central charges remains the same in passing

to the QR-cohomology or sheaf of CDR. Hence, the expected levels of the SU(2)L and

U(1)R current algebras, furnished by global sections of the sheaf of mirror CDR, should be

given by k + 2 and −k − 2 respectively. The only case in which they are equal is k = −2,

for which the levels are both 0. This is not really a physically sensible value for the WZW

model; physically sensible, unitary WZW models with convergent path integrals must be

restricted to integer values of k with k ≥ 0. However, as we will see shortly, k is, in our

case at hand, an arbitrary complex parameter that is directly related to the moduli of the

sheaves of mirror CDR (that are in turn represented by H1(S3 × S1,Ω2,cl) ∼= C).
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In the sheaf of mirror CDR, the symmetries are readily complexified, so that the

symmetry of the corresponding current algebra which appears, should be at the Lie algebra

level GL(2) instead of U(2). Likewise, with respect to the SU(2) and U(1) subgroups of

GL(2), the symmetry of the corresponding current algebra that will appear should be given

by SL(2) and GL(1) respectively. In addition, the U(1)R (which acts on the coordinate

variables vi, to be introduced shortly, by vi → eiθvi) and the rotation of S1 (which acts

by vi → eχvi with real χ) combine together to generate the center of GL(2). At the Lie

algebra level, the center is GL(1). This is the symmetry that we will expect to see as well.

Note that the rotation of S1 will always corresponds to a U(1) current algebra with equal

left and right central charges. Thus, it will not affect our above discussion whereby only

the differences between the left and right central charges are important.

Constructing a sheaf of mirror CDR on S3 × S1. We now proceed towards our

main objective of constructing a family of sheaves of mirror CDR on S3×S1. As a starter,

we will first construct a sheaf of mirror CDR without introducing any modulus. At this

point, one would already be able to see, within the current algebras derived, the expected

symmetries discussed above. Thereafter, we will generalise the construction and introduce

a variable parameter which will serve as the modulus of the sheaves of mirror CDR. It is

at this juncture that we find an explicit relation between the modulus of the sheaves and

the level of the underlying SU(2) WZW model.

Let us begin by noting that S3 × S1 can be expressed as (C2 − {0})/Z, where C2 has

coordinates v1, v2, and {0} is the origin in C2 (the point v1 = v2 = 0) which should be

removed before dividing by Z. Also, Z acts by vi → λnvi, where λ is a nonzero complex

number of modulus less than 1, and n is any integer. λ is a complex modulus of S3 × S1

that we shall keep fixed.

To construct the most basic sheaf of mirror CDR with target S3 × S1, one simply

defines the scalar coordinate variables vi as free bosonic fields of spin 0, with conjugate

spin 1 fields Vi. From our earlier discussions, one will also need to introduce fermionic

fields wi of spin 0, with conjugate spin 1 fields W i. Since S3 × S1 has complex dimension

2, the index i in all fields will run from 1 to 2. Therefore, the free field action that one

must consider is given by

I =
1

2π

∫
|d2z|

(
V1∂̄v1 + V2∂̄v2 + W 1∂̄w1 + W 2∂̄w2

)
. (7.38)

Notice that the above V v-Ww system is just a βγ-bc system with nontrivial OPE’s

Vi(z)vj(z′) ∼ −δi
j/(z − z′) and W i(z)wj(z

′) ∼ δi
j/(z − z′).

In the above representation of S3 × S1, the action of Z represents a geometrical sym-

metry of the system. Thus, the only allowable operators are those which are invariant

under the finite action of Z. These operators will therefore span the space of global sec-

tions of the sheaf of mirror CDR. Under this symmetry, vi transforms as vi → ṽi = λvi.

In order to ascertain how the rest of the fields ought to transform under this symmetry,

we simply substitute vi and ṽi (noting that it is equivalent to γi and γ̃i respectively)

into (6.28)–(6.31). In short, the only allowable operators are those which are invariant

under vi → λvi, Vi → λ−1Vi, wi → λ−1wi and W i → λW i.
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One operator that possesses this invariance is the stress tensor

Tzz =
1

2π

∑

i

(Vi∂vi + W i∂wi). (7.39)

Contrary to the CP1 example, a stress tensor exists in the chiral algebra of the model on

S3 ×S1 - as explained previously, one can find, in the mirror CDR case, a global definition

for the stress tensor, because S3 × S1 is parallelised and its first Chern class vanishes.

Hence, the chiral algebra of the described theory is conformally invariant, and the sheaf

of mirror CDR has a structure of a topological vertex (super)algebra. This reflects the

superconformal invariance of the underlying (2, 2) model on S3×S1. A bosonic βγ system

of spins 1 and 0 has central charge c = 2, while a fermionic bc system of spins 1 and 0 has

c = −2. Thus, the stress tensor T has c = 0, in agreement with what we had anticipated

from the underlying WZW model.

The chiral algebra of the underlying model also contains the dimension 1 currents J i
j =

−(Vjv
i+W iwj). As required, these (bosonic) current operators are invariant under the field

transformations vi → λvi, Vi → λ−1Vi, wi → λ−1wi and W i → λW i. They obey the OPE’s

J i
j(z)Jm

l (z′) ∼
δm
j J i

l − δi
lJ

m
j

z − z′
. (7.40)

We recognise this as a GL(2) current algebra at level 0.

When we proceed to generalise the above construction by introducing a variable pa-

rameter to serve as the modulus of the sheaves of mirror CDR, it will not be possible to

maintain manifest GL(2) symmetry. Hence, it will be useful to pick a basis in the current

algebra now. The SL(2) subgroup is generated by J3 = −1
2(V1v

1 + W 1w1 −V2v
2 −W 2w2),

J+ = −(V2v
1 + W 2w1), J− = −(V1v

2 + W 1w2), with nontrivial OPE’s

J3(z)J3(z
′) ∼ reg.

J3(z)J±(z′) ∼ ±
J±(z′)

z − z′
(7.41)

J+(z)J−(z′) ∼
2J3(z

′)

z − z′
.

Notice that this is just an SL(2) current algebra at level 0. The centre of GL(2) (at the

Lie algebra level) is given by GL(1). The corresponding current algebra is generated by

K = −1
2

(
V1v

1 + W 1w1 + V2v
2 + W 2w2

)
, with OPE given by

K(z)K(z′) ∼ reg. (7.42)

This is just a GL(1) current algebra at level 0.

The modulus of mirror CDR. Let us now generalise the above construction of the

sheaf of mirror CDR on S3 × S1. In order to do so, we must invoke a modulus that

will enable us to obtain a family of sheaves of mirror CDR. Recall that the modulus

is represented by the Cech cohomology group H1(S3 × S1,Ω2,cl) ∼= C.34 To model the

34Since we are computing the short distance operator product expansion of fields in the present context, it

suffices to work locally on Σ. Hence, the modulus will be represented by H1(X, Ω2,cl

X ) (where X = S
3 × S

1)

instead of H1(X × Σ, Ω2,cl

X×Σ) as stated at the end of section 5.6.
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modulus, one simply needs to introduce a variable complex parameter associated with

H1(S3 × S1,Ω2,cl).

Before we proceed any further, it will first be necessary for us to know how the relevant

fields will transform under a variation of the modulus. Recall from our discussion on local

symmetries in section 5.5 that Ω2,cl, the sheaf of closed, holomorphic (2, 0)-forms on a

manifold X, is associated with a non-geometrical symmetry of the free βγ-bc system on

X. Consider a general system of n conjugate βγ and bc systems, with nontrivial OPE’s

βi(z)γj(z′) ∼ −δj
i /(z − z′) and bi(z)cj(z

′) ∼ δi
j/(z − z′) respectively. Let F = 1

2fij(γ)dγi ∧

dγj be a closed holomorphic two-form. Under the symmetry associated with F , the fields

transform as

γj → γj

βi → β′
i = βi + fij∂γj (7.43)

cj → cj

bi → bi.

In the spirit of section 5.5, one can verify the above transformations by locally construct-

ing a holomorphic one-form A = Ai(γ)dγi, with dA = F so that F is closed, and then

computing the relevant OPE’s which determine how the fields transform under the action

of the conserved charge
∮

Ai∂zγ
idz.

To apply the above discussion to the present case where X = S3 × S1, let us first

make a cover of S3 × S1 by two open sets U1 and U2, where U1 is characterized by the

condition v1 6= 0, and U2 by v2 6= 0. Note that this is not a “good cover,” as U1 and U2 are

topologically complicated (each being isomorphic to C × E, where E is an elliptic curve).

As such, one cannot, in general, be guaranteed that an arbitrary cohomology class can be

represented by a Cech cocycle with respect to this cover. However, in the present context,

we have on U1 ∩ U2, a holomorphic section of Ω2,cl given by

F =
dv1 ∧ dv2

v1v2
. (7.44)

Since F cannot be “split” as a difference of a form holomorphic in U1 and one holomorphic in

U2, it thus represents an element of H1(S3 × S1,Ω2,cl). From the correspondence between

the V v-Ww and βγ-bc systems, the relevant field transformations are thus given by

v1 → v1 v2 → v2

V1 → V ′
1 = V1 + t

∂v2

v1v2

V2 → V ′
2 = V2 − t

∂v1

v1v2
(7.45)

b1 → b1 b2 → b2

c1 → c1 c2 → c2.

Here t is a complex parameter. We will see shortly that it is related to the level k of

the underlying SU(2) WZW model. Hence, we obtain a family of sheaves of mirror CDR,
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parameterized by t, by declaring that the fields undergo this transformation from U1 to U2

when we glue the sheaves together.

Let us determine how some important operators behave under this deformation. Notice

that the stress tensor T = V1∂v1 + V2∂v2 + W 1∂w1 + W 2∂w2 is invariant. Hence, the

deformed theory, for any value of t, has a stress tensor of c = 0. This is in accordance with

the fact that the (2, 2) model on S3 × S1 is conformally invariant for all k, and that the

difference between its left and right central charges is always 0.

Let us now consider the GL(1) current, which at t = 0 (i.e. without considering the

modulus) was defined to be K = −1
2

(
V1v

1 + W 1w1 + V2v
2 + W 2w2

)
. Under (7.45), we

have

K → K −
t

2

(
∂v2

v2
−

∂v1

v1

)
= K̃. (7.46)

Note that the shift in K under this transformation to K̃ (in going from U1 to U2) is not

an anomaly that spoils the existence of K at t 6= 0. The reason is because in contrast to

the situation encountered with the dimension 1 operator J (z) in the CP1 example, K̃ −K

can be expressed as a difference between a term (namely t ∂v1/2v1) that is holomorphic in

U1 and a term (namely t ∂v2/2v2) that is holomorphic in U2.

Since we want to study how the current algebra will depend on t, it will be necessary

for us to re-express the above globally-defined GL(1) current generator K in such a way

that its explicit t dependence is made manifest in both U1 and U2. In order to be consistent

with (7.46), we just need to ensure that the difference in the new expressions of K in U2

and U1 is given by

−
t

2

(
∂v2

v2
−

∂v1

v1

)
. (7.47)

In addition, these expressions in U1 and U2 must be invariant under the geometrical sym-

metry vi → λvi if K is to be an allowable operator. Noting these requirements, we arrive

at the following; in U1, the current is represented by

K [1] = −
1

2

(
V1v

1 + W 1w1 + V2v
2 + W 2w2

)
−

t

2

∂v1

v1
, (7.48)

while in U2, it is represented by

K [2] = −
1

2

(
V1v

1 + W 1w1 + V2v
2 + W 2w2

)
−

t

2

∂v2

v2
. (7.49)

Recalling that the original expression of K given by −1
2

(
V1v

1 + W 1w1 + V2v
2 + W 2w2

)
is

a global section of the sheaf of mirror CDR and is thus holomorphic in both U1 and U2, we

see that K [1] and K [2] are holomorphic in U1 and U2 respectively. Moreover, as required,

K [1] also transforms under (7.45 ) into K [2]. Hence, for any value of t, the sheaf of mirror

CDR has a global section K that is represented in U1 by K [1] and in U2 by K [2].

Now we can compute the OPE singularity of K for any t:

K(z)K(z′) ∼ −
t

2

1

(z − z′)2
. (7.50)
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To arrive at this result, we can either work in U1, setting K = K [1] and computing the

OPE, or we can work in U2, setting K = K [2] and computing the OPE. The answer will

come out the same in either case, because the transformation (7.45) is an automorphism

of the CFT. Thus, the level of the GL(1) current algebra is −t.

Likewise, we can work out the transformation of the SL(2) currents under (7.45). The

currents as defined at t = 0, namely J3 = −1
2(V1v

1 + W 1w1 − V2v
2 − W 2w2), J+ =

−(V2v
1 + W 2w1), J− = −(V1v

2 + W 1w2), transform as

J3 → J3 −
t

2

(
∂v1

v1
+

∂v2

v2

)

J+ → J+ + t
∂v1

v2
(7.51)

J− → J− − t
∂v2

v1
.

Similarly, the shifts in each current can be “split” as a difference of terms holomorphic in

U1 and U2. So the currents can be re-expressed to inherit t-dependent terms such that

they can be defined at t 6= 0. The new expressions of these currents which satisfy all the

necessary requirements are given, in U1 and U2 respectively, by

J
[1]
3 = −

1

2

(
V1v

1 + W 1w1 − V2v
2 − W 2w2

)
+ t∂v1/2v1 (7.52)

J
[2]
3 = −

1

2

(
V1v

1 + W 1w1 − V2v
2 − W 2w2

)
− t∂v2/2v1 (7.53)

together with

J
[1]
+ = −(V2v

1 + W 2w1) (7.54)

J
[2]
+ = −(V2v

1 + W 2w1) + t∂v1/v2 (7.55)

and

J
[1]
− = −(V1v

2 + W 1w2) + t∂v2/v1 (7.56)

J
[2]
− = −(V1v

2 + W 1w2). (7.57)

As required, J
[1]
3 , J

[1]
+ and J

[1]
− transform into J

[2]
3 , J

[2]
+ and J

[2]
− respectively under (7.45).

Hence, for any value of t, the sheaf of CDR also has global sections J3, J+ and J− that are

represented in U1 by J
[1]
3 , J

[1]
+ and J

[1]
− , and in U2 by J

[2]
3 , J

[2]
+ and J

[2]
− .

We shall now compute the OPE’s of these current operators, working in either U1 or

U2, whichever proves to be more convenient. We obtain an SL(2) current algebra at level t:

J3(z)J3(z
′) ∼

t

2

1

(z − z′)2

J3(z)J±(z′) ∼ ±
J±(z′)

z − z′
(7.58)

J+(z)J−(z′) ∼
t

2

1

(z − z′)2
+

2J3(z
′)

z − z′
.
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The SL(2) and GL(1) current algebras thus have levels t and −t, in agreement with

what we had anticipated from the half-twisted B-model if the level k of the underlying

SU(2) WZW theory is related to the CDR parameter t by k = t − 2; indeed at t = 0, the

level of the SL(2) and GL(1) current algebras are the same at 0, where k = −2.

Note that the QR-cohomology of S3 × S1 does not receive instanton corrections. For

any target space X, such corrections (because they are local on the Riemann surface Σ,

albeit global in X) come only from holomorphic curves in X of genus zero. There is no

such curve in S3 × S1. Therefore, the above analysis of the QR-cohomology of S3 × S1 is

exact in the full theory.

8. Relation to the mirror symmetry of twisted generalised complex man-

ifolds

In this section, we will provide an a priori reason for the mysterious relation between the

level k and the complex parameter t of the half-twisted B-model on S3 ×S1, i.e., k = t− 2

- we will show that the relation is consistent with and therefore due to the mathematical

results in [2] on the mirror symmetry of generalised complex manifolds. Since the origin

of the relation rests upon the principle of mirror symmetry, we will be able to provide as

well, an a priori reason for a similar relation revealed in the context of the half-twisted

A-model on the same group manifold involving the sheaf of CDR.

8.1 Mirror symmetry of the 2-torus and strong-weak duality

Let us start by discussing the simplest form of mirror symmetry - that of a one-dimensional

Calabi-Yau manifold given by a 2-torus. A 2-torus T2 = S1 × S1 has both complex and

Kähler moduli - if we let the radii of the two S1 circles be R1 and R2 respectively, the

complex modulus will be given by R1/R2, and the Kähler modulus will be given by R1R2.

By definition, mirror symmetry exchanges the complex and Kähler moduli of a Calabi-Yau

manifold. In the case of a 2-torus, this is effected by R2 ↔ 1/R2. Notice that this is simply

a T-duality operation on the second S1 circle in T2.

Note that for a sigma model on T2, one usually works with the complexified Kähler

moduli and complex structure - the complex structure can be written as σ = σ1 + iσ2,

where σ2 = R1/R2, and the Kähler modulus can be written as ρ = ρ1 + iρ2, where

ρ1 = (1/2π)
∫
Σ φ∗(B) and ρ2 = R1R2. Mirror symmetry then exchanges σ ↔ ρ.

The observation that mirror symmetry is T-duality is consistent with the fact that the

(half-twisted) A-model on T2 is equivalent to the (half-twisted) B-model on T̃2, where T2

and T̃2 are mirror partners35 — recall that one can map between the A- and B-models by

flipping the sign of the left-moving ghost number current J(z), and this can be effected by

a T-duality on one of the S1’s of the 2-torus target space.

35Note that the mirror symmetric relation between the topological A- and B-models on mirror Calabi-

Yau spaces can be applied to their half-twisted variants because the spectrum of local operators in either

variants is given by the cohomology with respect to the same Q+ operator.
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Last but not least, recall that the strength of the sigma model coupling is proportional

to the inverse of the metric of the target space. Hence, since R2 ↔ 1/R2 under T-duality, we

equivalently have a strong-weak duality of the worldsheet theory under mirror symmetry.

8.2 An equivalence of theories as a form of twisted generalised mirror symmetry

Recall from the description of S3 × S1 as a non-Kähler complex manifold with torsion in

section 3.4, that it can be constructed as a non-trivial fibration of CP1 with fibres E = T2,

where T2 is a genus one complex Riemann surface. The complex structure of S3 ×S1 will

then given by the non-zero complex number λ that has been made manifest in its other

description as C2/Z.

Now, consider the B-model on a 2-torus T2 at weak coupling. This is equivalent to the

A-model on a mirror 2-torus T̃2 at strong coupling. Let us fibre the T2 on the B-model

side adiabatically36 over a CP1 base. Likewise, let us fibre the T̃2 on the A-model side

adiabatically over the same CP1 base. Then, via the principle of fibrewise duality [44], and

the above description of S3 × S1 as a 2-torus fibration of CP1, we find that the B-model

on X = S3 ×S1 at weak coupling, is equivalent to the A-model on X̃ = S̃3 × S̃1 at strong

coupling, where X has fibres E = T2, while X̃ has fibres Ẽ = T̃2. Alternatively, we

find that the A-model on X = S3 × S1 at weak coupling, is equivalent to the B-model on

X̃ = S̃3 × S̃1 at strong coupling. It is in this sense that X and X̃ define a twisted (i.e.

non-zero torsion) generalised mirror pair.

The above observation that X and X̃ should be mirror pairs, is mathematically con-

sistent with the recent results by Ben-Bassat in [2] which furnishes an extension of the

Strominger-Yau-Zaslow concept of T-duality as mirror symmetry for Calabi-Yau mani-

folds, to generalised complex manifolds with possibly non-zero torsion. This can be seen

as follows. Firstly, in [2], it is shown that for a real n-torus bundle with sections over an

n-dimensional base such that one can define a flat connection over the total space, the

mirror geometry will be given by a dual n-torus bundle with the same base but with dual

torus fibres, where the dual torus fibre can be obtained from the orginal torus fibre via

T-duality in an odd number of directions. Secondly, notice that X and X̃ are twisted

generalised complex manifolds which can be viewed as real 2-torus bundles with sections

over the same n-dimensional base, where one can define a flat connection over the total

space because X and X̃ are parallelised. Consequently, since the 2-torus fibres E and Ẽ

of X and X̃ are related by T-duality along one of the two circle directions, the twisted

generalised mirror geometry of X is indeed mathematically given by X̃ .

8.3 The relation k = t − 2 and twisted generalised mirror symmetry

In [2], it is shown that from the flat connections on a pair of mirror n-torus bundles, one

can define (semi-flat, generalised) complex structures on them. In addition, it is also shown

that there is an explicit bijective correspondence between these complex structures. We

shall now show that the relation k = t − 2 obtained for the half-twisted B-model on X

36The condition of adiabaticity is not absolutely necessary. In fact, as reviewed in [44], there can even

be singular fibres over various points on the base space, and the resulting physics will still be consistent.
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involving the sheaves of mirror CDR, and the simlar relation k̃ = t̃− 2 obtained in [15] for

the half-twisted A-model on X̃ involving the sheaves of CDR, (where k̃ is the level of the

underlying SU(2) WZW model, and t̃ is a complex parameter associated with the modulus

of CDR), is consistent with this bijective correspondence.

Firstly, recall from section 3.3 and 3.4 that we have the three-form flux H = 2i∂ωT

which generates a class in H1(S3 × S1,Ω2,cl) ∼= C that is associated with the moduli

of mirror CDR, where the hermitian (1, 1)-form ωT can be explicitly written as ωT =

dt ∧ ζ + π∗(ω0). Likewise, for the A-model on X̃, we have the three-form flux H̃ = 2i∂ω̃T

which generates a class in H1(S̃3 × S̃1,Ω2,cl) ∼= C that is associated with the moduli of

CDR, where the hermitian (1, 1)-form ω̃T can be explicitly written as ω̃T = d̃t∧ ζ̃ +π∗(ω̃0).

As pointed out in section 3.4, ω0 is an SO(3)-invariant form on the S2 base space of

X. Since X and X̃ are 2-torus fibrations of the same S2 base space, it will mean that ωT

and ω̃T are distinct from each other only because of the terms dt ∧ ζ and d̃t ∧ ζ̃, where ζ

and ζ̃ are one-forms which can be kept fixed as the complex structures on X and X̃ are

varied.

As explained in section 3.4, the choices of the one-forms dt and d̃t will determine the

choices of the complex structures on X and X̃ and vice-versa. This means that the choices

of the complex structures on X and X̃ will determine the choices of ωT and ω̃T , which in

turn will determine H and H̃ respectively. Since H and H̃ generate the one-dimensional

classes in H1(S3 × S1,Ω2,cl) and H1(S̃3 × S̃1,Ω2,cl) which are correlated with the choices

of t and t̃ (as shown in section 7.2 and [15]), it will mean from the relations k = t − 2 and

k̃ = t̃ − 2, that a choice of the complex structure on X or X̃ will determine a choice of k

or k̃.

Recall from section 3.4 that the value of k or k̃ will determine the Kähler moduli of

E = T2 or Ẽ = T̃2. From our earlier discussion in section 8.1 on the mirror symmetry

of 2-torus’s, we showed that the Kähler moduli of E = T2 will be given by the complex

structure moduli of Ẽ = T̃2 and vice-versa. We also saw in section 3.4, from the two

different constructions of X and therefore X̃, that the complex structure of X or X̃ is

determined by the complex structure of E or Ẽ respectively. Collectively, this means that

a choice of the complex structure on X, will determine a choice of the complex structure

on X̃ , and vice-versa. In other words, we have a bijective correspondence between the

complex structure on X = S3 × S1 and the complex structure on its twisted generalised

mirror X̃ = S̃3 × S̃1, in agreement with the mathematical results of [15].

Hence, the existence of a bijective correspondence of the complex structures on mirror

pairs of 2-torus bundles, serves as an a priori reason for the once mysterious relations

k = t−2 and k̃ = t̃−2 uncovered in the context of the A and B-models on a mirror pair of

S3 × S1’s, whence the corresponding chiral algebras can be described by sheaves of CDR

and mirror CDR respectively. Moreover, as explained at the end of section 8.1, since there

is a strong-weak duality between the A-model on X and the B-model on X̃ , and since there

are no worldsheet instanton corrections to the analysis that lead up to these relations as

explained in section 7.2, we find that they will hold beyond the perturbative regime in the

full theory.
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